

SR 179 AT TLAQUEPAQUE PEDESTRIAN CROSSING

FINAL GEOTECHNICAL REPORT

CITY OF SEDONA, ARIZONA

PROJECT NO.: 30900006A DATE: AUGUST 2022

WSP 1230 WEST WASHINGTON STREET, SUITE 405 TEMPE, ARIZONA 85281 August 29, 2022

- Attn: Mr. Robert Welch, PE City of Sedona
- Re: Final Geotechnical Report SR 179 at Tlaquepaque Pedestrian Crossing Sedona, Arizona

Presented herein is our Final Geotechnical Report for the subject project. This report is based on the results of our evaluation of pre-existing subsurface information collected by others in the immediate area and our surface observations of the geologic and geotechnical conditions during a limited site reconnaissance. A new subsurface exploration specifically for the pedestrian crossing was *not* performed for this project, due to the limited access for exploration equipment and because some subsurface data from others was available. As a result, we recommend performance of on-site inspections by the Geotechnical Engineer during construction to confirm the geotechnical assumption made herein.

The evaluation included a review of available geologic and geotechnical information from nearby projects and the anticipated geotechnical profile associated with the geologic units exposed in the immediate vicinity of the project. The report presents our geotechnical recommendations for design and construction of planned structure and earth-related elements.

Please do not hesitate to contact us if you have any questions concerning this report.

Respectfully submitted, WSP USA

By: Professional Eng. Professional Eng. By: Professional Eng. By: Professional Eng. Professi

Kevin L. Porter, PE Senior Geotechnical Engineer cc: Addressee (PDF) WSP USA 1230 West Washington Street, Suite 405 Tempe, AZ 85281 **Reviewed By:**

David E. Peterson, PG Senior Geologist

> Tel.: +1 480 966 8295 wsp.com

Final Geotechnical Report Project No. 30900006A City of Sedona

vsp

TABLE OF CONTENTS

1	INTRODUCTION & SCOPE OF WORK	1
2	PROJECT DESCRIPTION	. 2
3	SITE CONDITIONS	. 3
3.1	Geologic Setting	4
3.2	General Geotechnical Profile	. 5
3.3	Groundwater Conditions	12
3.4	Site Seismicity	12
4	DISCUSSION AND RECOMMENDATIONS	14
4.1	Path Stabilization Techniques	14
4.2	Foundations	14
4.3	Earthwork	14
4.3.1	Excavations	.15
4.3.2	Temporary Slope Stability and Shoring	.15
4.3.3	Bottom Stability and Dewatering	.15
4.3.4	Grading, Fill Placement and Compaction	.15
4.3.5	Permanent Fill Slopes	.15
4.3.6	Earthwork Factors	.16
4.4	Lateral Earth Pressures	16
5	REFERENCES	17

TABLES

APPENDICES

A Pertinent Record Drawings and Subsurface Information

1 INTRODUCTION & SCOPE OF WORK

The proposed project consists of the construction of a new pedestrian crossing beneath SR 179, in the Tlaquepaque area of Sedona, Arizona. The path of the pedestrian walkway will follow Alternative 3, Underpass at Oak Creek, as provided in the Feasibility Study for the project by WSP, dated June 2019. This alternative includes a pathway under the existing Oak Creek bridge to cross SR 179 with less disturbance to vehicular traffic on SR 179. The project will include access ramps from the roadway elevation down to the lower path crossing under the bridge on each side of the SR 179 roadway.

Our geotechnical scope of work included the following:

- Review of the record drawings for the existing bridges, published geologic and hydrogeologic literature, relevant reports, and subsurface data from geotechnical reports by others at the project site.
- A brief on-site geologic site reconnaissance to observe existing site features and confirm geologic deposits present.
- Preparation of this geotechnical design report, presenting the results of our review, site observations, and geotechnical design profile and recommendations for the planned improvements.

Due to access constraints and pre-existing geotechnical information available for the immediate area, new geotechnical borings were not performed for this project. Our geotechnical design recommendations presented herein rely on existing subsurface information provided on record drawings by others for the existing bridges in the immediate area and surface exposures observed during the site visit.

The following record drawings from projects near the site were reviewed for existing geotechnical information as part of this project.

• North Forest Boundary to City of Sedona (179 CN 310 H3414 03C): Record Drawings, including Foundation Data Sheets.

A site inspection during excavation for the sidewalk ramps. retaining walls and the sidewalk beneath the bridge by the Geotechnical Engineer or Geologist is essential for confirmation of foundation conditions, particularly since undocumented fills are present at the site and project specific exploratory borings were not completed.

2 PROJECT DESCRIPTION

As noted above, the recommended alternative is to construct a pedestrian pathway under the existing SR 179 Oak Creek Bridge, with access ramps dropping down to the creek level from the roadway elevation on each side of SR 179. The pathway will be constructed of concrete, including the section under the Oak Creek Bridge, and it will connect both the north and south sidewalks of SR 179. In addition, pavement markings, signage, pedestrian channelization and enhanced landscaping will be included.

The planned concrete pedestrian path will be approximately 10 to 12 feet wide. Since the path will ultimately drop below the highwater level of Oak Creek, scour and erosion protection of the pathway will be required to reduce potential damage to the pathway during storm water runoff events. In addition, we understand that retaining walls, generally less than 15 feet in height, will be needed along portions of the path due to topographic relief and side hill construction along the ramps.

3 SITE CONDITIONS

The project site is located near downtown Sedona along SR 179 near the developed Tlaquepaque area, as depicted in Figure 1 below. SR 179 at this location is an east-west trending asphalt concrete (AC) paved roadway with one lane in each direction of travel. SR 179 crosses Oak Creek Bridge to the east and includes a roundabout immediately east side of the bridge that transitions to a north-south trending roadway. There are existing sidewalks on both sides of the roadway and a raised median. The Oak Creek Pedestrian Bridge is located immediately north of SR179 providing pedestrian connectivity across Oak Creek on the north side of SR 179.

Oak Creek is a perennial spring-fed stream generally flowing in a southerly direction and lined with vegetation consisting of trees, grass and bushes. Surface water flows within the drainage bottom of Oak Creek immediately upstream of the bridge site include two distinct flow paths. The main channel which carries the higher volume flows is located on the east side of the drainage floor and crosses under the bridge between the east piers and the east abutment. The secondary channel flows along the west side of the drainage floor and turns east toward the main channel where it intersects the base of the fills placed on the north side for the SR 179 roadway approach. The two channels merge beneath the Pedestrian Bridge before flowing under the SR 179 Bridge as shown in Figure 2. The surface water level of the secondary channel is higher than the lower main channel upstream of the bridge crossing. The existing western side slopes on both the upstream and downstream sides of SR 179 are lined with gabion mattresses for erosion protection. Bedrock exposures are visible below the east abutment of SR 179 but no bedrock outcrops were observed on the west side of the creek.

FIGURE 1: Project Site

Figure 2: Oak Creek Flows in Site Area (looking West)

Based on review of the record drawings for the existing bridges, Abutment 2 of both the Oak Creek Bridge (Structure No. 2850) and the Oak Creek Pedestrian Bridge (Structure No. 10624) (shown in Figure 2) are supported on 42-inch diameter drilled shaft foundations socketed into the underlying bedrock.

Grouted riprap, reportedly 5 to 10 feet in width, extends down to the bedrock contact in front of the Abutment 2 foundations of both bridges for scour protection. The grouted riprap also reportedly was placed along retaining wall R6, which is located parallel to SR 179 on the north side of the Pedestrian Bridge Abutment 2 for a length of about 55 feet. The top of the grouted riprap is reported to match the elevation of the top of the adjacent footing. Select drawings/details from the record drawings are provided in Appendix A.

The existing ground surface elevation along the proposed path alignment varies from about Elevation 4,200 feet near the connections with SR 179 roadway surface down to about Elevation 4,180 below the bridge in front of the existing bridge abutments (noted as New Walkway in Figure 2).

3.1 GEOLOGIC SETTING

The project site lies within the Transition Zone Physiographic Province in central Arizona at the base of the Mogollon Rim. The Mogollon Rim marks the boundary between the Transition Zone and the uplifted Colorado Plateau. However, the geologic units exposed in the Sedona area are dominated by a thick sequence of Paleozoic-age sedimentary rocks including siltstone, sandstone, mudstone and lesser limestone which is typically associated with the sequence underlying the Colorado Plateau Province. Significant erosion over time below the uplifted Mogollon Rim escarpment has resulted in the high relief topography of the Mogollon foothills in the Sedona area. The sequence of Paleozoic sedimentary rocks is ultimately capped with Tertiary volcanic flows on top of the Rim at the higher elevations.

The primary unit of the Paleozoic sedimentary sequence exposed in the site area consists of the Lower Permian-age Hermit Formation. The formation generally consists of thin-bedded deposits of fine-grained sandstone, siltstone and mudstones (Dewitt et al., 2008) and previously was referred to as the Hermit Shale. The Hermit Formation is locally covered with Oak Creek Alluvium that was deposited within the defined path of Oak Creek, which passes through the project site.

3.2 GENERAL GEOTECHNICAL PROFILE

Based on review of the available record drawings for the adjacent bridge structures and our observation during the geologic site reconnaissance, we anticipate a relatively shallow profile of alluvial soils and fill primarily consisting of silty sand, gravel, and cobbles/boulders overlying bedrock of the Hermit Formation. Large boulders associated with the high energy depositional environment within Oak Creek are present and should be anticipated during construction. Previous explorations near Abutment 2 indicate that the elevation of top of bedrock is near Elevation 4,170 feet. It is likely that the top of bedrock elevations will vary along the pathway alignment due to variable erosion over time.

As noted, the geologic units exposed at the site include undocumented fill, coarse-grained Oak Creek alluvium and sandstone bedrock as presented below:

Oak Creek Alluvium:

The Oak Creek alluvial deposit is exposed within the confines of the Oak Creek drainage channel and adjacent terrace levels above the creek floor. The exposures of Oak Creek alluvium at the site occur in the drainage floor beneath the bridges and on the west banks of the creek. The deposit is expected to be very lenticular and composed of minor sand layers interbedded with poorly sorted sand, gravel and cobble mixtures with boulders. The alluvial soils are highly variable and range in density from loose to dense. The sand lenses are composed of brown fine-grained sand and the material is non-plastic to low in plasticity. Figure 3 shows a thin deposit of sand along the walkway alignment below the bridge. The deposit is local and non-continuous and represents deposition during lower flow or backwater conditions in recent runoff events.

Figure 3: Oak Creek sand layer along pathway alignment beneath bridge

The coarse-grained poorly sorted mixtures of sand, gravel, cobbles, and boulders are prevalent over the site. The deposits are expected to be highly variable and contain some silt and locally may contain a small amount of clay. The particles are generally rounded to sub-rounded in shape and the deposit is low in plasticity to non-plastic, dense and grayish brown. Boulders are common up to about 3-feet in diameter.

Figure 4: Coarse-grained Oak Creek alluvium

Undocumented Fill:

Fill material is present at the site and largely consists of reworked Oak Creek alluvial deposits. The fill is generally located in three areas including:

- Area 1 Parking lot fill south of SR 179 forming the current western banks of Oak Creek,
- Area 2 Grouted Riprap beneath the SR 179 bridge in front of the west abutment, and,
- Area 3 North side fill between the SR 179 retaining wall and the secondary creek channel.

Area 1 likely includes some fill over native Oak Creek alluvium. The entire height of the slope below the parking lot down to the upper level of the creek floor is covered with a gabion mattress and thus no native alluvium is exposed in the slope. It is not known how thick the fill may be at this location. Figures 5 and 6 shows photos of the slope in this access ramp area.

Figure 5: Parking lot fill looking south

Figure 6: Parking lot fill looking north with gabion mattress

Construction of the pathway on this south side of SR 179 will require side hill construction and a retaining wall on the downslope side. Due to a lack of subsurface information in this area, an inspection of conditions is required during construction to verify the foundations are placed on native alluvium and the capacity of the alluvium is adequate to support the wall and sidewalk. The lower portions of the walkway and wall will be below the high-water mark and require scour protection.

Area 2 is reported to have grouted riprap down to the bedrock contact estimated at 10-feet deep (elevation 4170 feet). Exposures in this area include a thin sand layer overlying gravel, cobbles and boulders. However, the grouted riprap is not exposed at the surface. It is reported that the width of grouted riprap in front of the abutment wall is about 5 to 10 feet. Figure 7 shows the area and coarse-grained material in front of the wall but the grouted riprap is not exposed. There is a 36-inch diameter drain pipe penetrating through the abutment wall in the photo.

Figure 7: Coarse-grained rock in front of abutment wall

Area 3 is composed of gabion mattresses on the surface of the access ramp for the north side of SR 179. The exposed fill consists of gravel and cobbles and the thickness is not known. At some depth, the fill likely overlies coarse grained Oak Creek alluvium as exposed across the drainage channel. Figure 8 shows the gabion mattress of Area 3. Depths of fill and foundation conditions will need to be inspected during construction to verify adequate conditions are present. The lower levels will also require scour protection from adjacent flows within Oak Creek.

Figure 8: Access ramp and fill on north side of SR 179

Bedrock, Hermit Formation:

Bedrock is exposed only on the west side of the Oak Creek bank in the site area. The bedrock is reddish brown and consists of horizontally layered beds of silty sandstone and sandy siltstone. The bedrock is medium to thickly bedded. and is soft to moderately hard and reddish brown.

Figure 9: Hermit Formation sandstone bedrock on east Oak Creek banks

3.3 GROUNDWATER CONDITIONS

The regional depth to groundwater based on historic available well data from the Arizona Department of Water Resources (ADWR), is on the order of 30 feet or more below ground. However, groundwater is expected to be present along the creek within the Oak Creek alluvium. The depth to water will fluctuate seasonally and given the surface flows it should be expected in excavations at depths of a few feet below the ground surface and is anticipated to be a constraint to design and construction of the planned improvements. The elevation of the ground in front of the abutment is approximately 3 to 5 feet higher than directly adjacent surface water levels in the two channels of the creek.

3.4 SITE SEISMICITY

The project seismic AASHTO LRFD criteria were included in this report, in accordance with Section 3.10 of the AASHTO LRFD Bridge Design Specifications (2012). The horizontal design acceleration is defined as having a 7 percent chance of exceedance during a 75-year recurrence interval. The probabilistic horizontal spectral acceleration values for the designated return period and corresponding peak horizontal ground acceleration (PGA) were obtained from the United States Geological Survey (USGS) seismic hazards program website (USGS 2013). The values obtained from the website are based on 2009 AASHTO Guide Specifications for LRFD Seismic Bridge Design and use 2002 USGS seismic hazard data.

Based on the assumed soil and bedrock characteristics at the site, the underlying bedrock is expected to have a shear wave velocity of more than 2,500 feet/sec. As such, in accordance with AASHTO (2012), the site was classified as Site Class B. The seismic design parameters are presented in Table 3.1 - Summary of Seismic Design Parameters.

Location	Latitude & Longitude ⁽¹⁾	Site Class	Seismic Design Parameter	Period, T (second)	Spectral Acceleration Value, g
SD 170 of	24 04 24 41ºNI		As	0.0	0.088
Tlaquenaque	-111 762065°\//	В	S _{DS}	0.2	0.208
naquepaque	-m./02003 W		S _{D1}	1.0	0.062

Table 3.1 - Summary of Seismic Design Parameters

Note: ¹ Latitude and longitude of location used to determine seismic design coefficients from USGS website.

4 DISCUSSION AND RECOMMENDATIONS

The following sections present our geotechnical recommendations for the planned improvements based on limited subsurface data. These recommendations are based on our understanding of the project. We should be contacted for additional recommendations and/or evaluation during construction to confirm assumptions presented in this report.

4.1 PATH STABILIZATION TECHNIQUES

We understand that stabilization of the alluvial materials beneath the planned pathway is needed to protect the pathway from scour and erosion. Various stabilization methods could be considered, as well as other structural techniques. We recommend that within the limits of the pathway subject to scour/erosion, the existing alluvial materials be removed down to bedrock and replaced with scour-resistant materials such as grouted riprap, controlled low strength material (CLSM), or mass concrete.

Excavation of the alluvial materials overlying bedrock are discussed below. The excavation should penetrate the underlying bedrock a minimum of 6 inches. The exposed bedrock surface should be observed and approved by the geotechnical engineer prior to placement of any backfill materials. Groundwater and seepage from adjacent creeks and drainages should be anticipated. Dewatering and the overall stability of the excavation should be made the sole responsibility of the contractor.

Excavation adjacent to the existing grouted riprap should be performed so that damage to the grouted riprap does not occur or cause the mass to become unstable. The limits of the grouted riprap may be different than shown on the record drawings. The contractor should perform their own evaluation of the existing conditions.

4.2 FOUNDATIONS

Shallow spread footings sized to support the structural loads are anticipated to support retaining walls for the access ramps on the north and south sides of SR 179. Based on our review of available information and our experience, we recommend footings for retaining walls that are supported on stabilized materials or on at least 2 feet of engineered fill be designed using an allowable bearing capacity of 4,000 pounds per square foot. Total and differential settlement of the footings are anticipated to be less than ½-inch and ¼-inch, respectively.

Footings should be at least 18 inches in width and located at least 1.5 feet below the lowest adjacent grade. Where adjoining continuous footings are located at different elevations, we recommend that the upper footings be stepped down to the lower footing.

Lateral resistance for spread footings is provided by sliding along the base of the footing. Foundations subject to lateral loading may be designed using a coefficient of friction of 0.5 for footings bearing on stabilized materials.

4.3 EARTHWORK

The following sections provide our earthwork recommendations for the project. The earthwork specifications contained in the Maricopa Association of Governments (MAG), Uniform Standard Specifications and Details for Public Works Construction (including any amendments from the City of Sedona) should apply, except as noted in this report.

4.3.1 EXCAVATIONS

Based on our review of available information, the surface materials should be excavatable with heavy-duty excavation equipment to the depths anticipated for this project. Bedrock was encountered in previous borings in the vicinity and should be anticipated. Heavy-duty excavation equipment is anticipated to be able to penetrate the bedrock materials to the depths needed for this project.

4.3.2 TEMPORARY SLOPE STABILITY AND SHORING

Excavations that are less than 20 feet in depth may be constructed using a sloped excavation in accordance with Occupational Safety and Health Administration (OSHA) Standards and based on the soil types encountered during excavation. We recommend that the OSHA soil "Type C" be used for the alluvial soils present at the site with a temporary slope of 1.5H:1V (Horizontal:Vertical) be considered for sloped excavations less than 20 feet deep. Excavations extending significantly into bedrock are not anticipated but steeper slope excavations in rock may be possible based on the condition of the bedrock encountered.

Temporary excavations that encounter surface seepage may need temporary shoring or other stabilization techniques. Excavations encountering seepage, if any, should be evaluated on a case-by-case basis.

Shoring should be used in areas where slopes would exceed the inclinations recommended by OSHA or encounter seepage causing slope instability. Shoring may be required for construction excavations adjacent to existing structures or retaining walls. Shoring methods should avoid causing disturbance to existing Sycamore trees. The shoring system details should be left to the discretion of the contractor and should be designed by a qualified civil engineer.

4.3.3 BOTTOM STABILITY AND DEWATERING

Excavations may encounter perched groundwater or saturated geologic units and may cause the exposed bearing surface to weaken. The base of excavations should be sloped to drain towards a sump or other dewatering equipment. Heavily saturated units or zones may call for more aggressive dewatering techniques and consultation with a qualified expert. Discharge of water from excavations should be in accordance with project specifications and any applicable laws or regulations.

4.3.4 GRADING, FILL PLACEMENT AND COMPACTION

Vegetation, debris and other unsuitable materials from the clearing operation should be removed from the site and properly disposed. On-site and imported soils with low plasticity indices are considered suitable for re-use as fill. Low plasticity indices are defined as a Plasticity Index (PI) value of 20 or less, as defined by ASTM D 4318. Suitable fill should not include construction debris, organic materials, or other non-soil materials. Rock particles and clay lumps should be less than 6 inches in dimension. Oversize excavation materials should be expected and sorting and/or screening will be needed.

For areas to receive grade-raise fill or below structures, we recommend the surface be prepared by scarifying the upper 8 inches, unless bedrock is exposed. The scarified material should be moisture-conditioned and compacted by appropriate mechanical methods to a relative compaction of 95 percent and at a moisture content near optimum using ASTM D 698 as a standard. Grade-raise fill should be placed in lifts less than 8 inches in loose thickness and compacted as noted above. Unsuitable soils, if encountered, should not be used as backfill behind walls or as structural fill in the upper 3 feet below structures but may be placed as fill in other non-structural locations.

Placement of fill against sloped surfaces steeper than 5H:1V should be benched so that a weak zone against the slope is not formed and to promote uniform compaction across each lift of fill.

4.3.5 PERMANENT FILL SLOPES

Permanent fill slopes for this project can be sloped at an angle of 2H:1V if protected from erosion. Flatter slopes may be used to promote vegetation. Erosion protection could consist of riprap, shotcrete or other manufactured products. Erosion control products should be placed in accordance with the manufacturer's recommendations.

4.3.6 EARTHWORK FACTORS

Based on our review of available data, we estimate the on-site soils will shrink approximately 15 to 20 percent when recompacted to 95 percent of standard Proctor density. A ground compaction factor of 0.2 feet is estimated for compaction of the exposed ground surface outside the limits of the existing roadway prism.

4.4 LATERAL EARTH PRESSURES

Active earth pressure occurs when the wall moves away from the soil and the soil mass stretches horizontally, sufficient to mobilize its shear strength, and a condition of plastic equilibrium is reached. For a drained granular backfill, an equivalent fluid active earth pressure of 35 pounds per square foot per foot (psf/ft) of wall height should be used for the design of cantilevered, yielding walls. Drainage should consist of free-draining granular material and could be accompanied by weepholes through the walls or a geocomposite drainage mat attached to the wall and discharging to a drain pipe may be considered. If drainage is not provided, an equivalent fluid earth pressure of 85 psf/ft of wall height should be used for design of the walls. These earth pressures are based on the walls being flexible enough to allow mobilization of the active earth pressure condition. An outward lateral movement of about 0.001H (where H is the height of the wall) at the top of the wall is generally needed to mobilize the active earth pressure condition.

A soil mass that is neither stretched nor compressed is said to be in an at-rest state. If the wall is rigidly restrained, so that it does not rotate sufficiently to reach the active earth pressure condition, at-rest earth pressure conditions will exist. An equivalent fluid at-rest earth pressure of 57 psf/ft should be used for the drained condition, and 90 psf/ft should be used for the undrained condition.

Passive earth pressure occurs when the wall or foundation moves into the soil and the soil mass is compressed horizontally, mobilizing its shear strength. For below-grade portions of the walls with granular backfill in front of the toe of the wall, an equivalent fluid passive earth pressure of 350 psf/ft of wall height can be utilized (triangular pressure distribution). This should be reduced for walls with sloping foreslopes and eliminated for walls subject to erosion or scour effects from the creek.

5 REFERENCES

- American Association of State Highway and Transportation Officials (AASHTO), 2012. AASHTO LRFD Bridge Design Specifications. 6th Edition. Washington, DC: American Association of State Highway and Transportation Officials.
- Arizona Department of Water Resources (ADWR), 2012. Groundwater Site Inventory (GWSI) database https://gisweb.azwater.gov/waterresourcedata/GWSI.aspx (Accessed January 2020).
- United States Geological Survey (USGS), 2013. U.S. Seismic Design Maps. Version 3.1.0. http://earthquake.usgs.gov/designmaps/us/application.php (Accessed January 2020).
- Dewitt, E., Langenheim, V., Force, E., Vance, R.K., Lindberg, P.A., Driscoll, R.L., 2008, Geologic Map of the Prescott National Forest and headwaters of the Verde River, Yavapai and Coconino Counties, Arizona.
- Kamilli, R.J. and Richard, S.M., 1998, Geologic Highway Map of Arizona: Arizona Geological Society and Arizona Geological Survey Map.
- Maricopa Association of Governments, 2012, Specifications and Details for Construction.
- Occupational Safety and Health Administration (OSHA), Title 29 of the Code of federal Regulations (CFR), Part No. 1926
 Safety and Health Regulations for Construction, Subpart P Excavations.

APPENDIX A

F.H.W.A. REGION	STATE	PROJECT NO.	SHEET NO.	TOTAL SHEETS	AS BUILT
9	ARIZ.	179-A-(002)B	430	760	3/15/11
		179 CN 310			

DRAWING INDEX:

010/01110	
5-2 01	General Plan & Index
6 5 00	Elevention & Tuntool Cookiene
3-2.02	Elevation & Typical Sections
5-2.03	General Notes & Quantities
5-2.04	Phasing Sequence 1
C	Phaetna Soguence 2
3-2.00	Fligsting Sequence Z
5-2.00	Bridge Removal Limits
5~2.07	Excavation & Backfill Limits
c	Equindation Plan & Dotatio
372.00	
S-2.09	Abutment I Plan & Elevation
S-2.10	Abutment 2 Plan & Elevation
5-2 11	Abutmont Dotaile 1
372.11	Appliment perdits 1
5-2,12	ADUTMENT DETAILS 2
S-2.13	Abutment Details 3
5-2 14	Retaining Wall
5 2.17	
5-2.15	Pler I Plan & Elevation
S-2.16	Pier 2 Plan & Elevation
5-2 17	Pier Details 1
C 2 10	Diam Datatia 2
2-2-10	FIER DETAILS Z
S-2.19	Framing Plan Span 1
S-2-20	Framing Plan Spans 2 & 3
C_2 21	Boy Cirdor Dotailo 1
5-2.21	
5-Z. ZZ	Box Girder Details Z
S-2.23	Box Girder Details 3
5-2.24	Box Girder Details 4
	Box Cirdor Dotatio
3-2.20	box Girder Deighis 2
S-2.26	Box Girder Details 6
S-2.27	Deck Plan
5-2 28	Deck Detalic 1
5 2 20	
2-2-23	Deck Details Z
S-2:30	Deck Details 3
S-2, 31	Deck Details 4
S-2 32	Combination Redectrian-Traffic
3-2.JZ	
	Bridge Railing I
S-2.33	Combination Pedestrian-Traffic
	Bridge Railing 2
5-2 34	Combination Redectrian-Traffic
3-7" 1H	compandant recession-manile
	Bridge Kalling 3
S-2.35	Combination Pedestrian-Traffic
	Bridge Railing 4
5-2 36	Micoollappour Dotaile 1
3-2.10	
S-2.31	Miscellaneous Details 2
S-2.38	Miscellaneous Detalis 3
5-2 39	Screed Elevations 1 of 3
2 2. 33	
5-2.40	Screed Elevations 2 of 5
S-2.41	Screed Elevations 3 of 3
5-2.42	Compression Seal Modification Detail
CE_2 01	Equipologian Data 1
SF-2.02	Foundation Data 2
SF-2.03	Foundation Data 3
SE-2.04	Foundation Data 4
CE .0 05	Foundation Data F
31-2.05	Loningiton naig 2

NOTE:

All stations & dimensions are given along the Oak Creek Bridge Cst &.

:									
	NAME	DATE	AR	TONA DEPA	RTMENT OF	TRANSE	ORTATION		and on a
EO		05/07	nii	INTERMOD	AL TRANSPOR	TATION D	VISION	A Prov	INCAPE STATIS
ST		05/07		B	RIDGE G	ROTID		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
PC		05/07			CT.VO	\sim	<u></u>		HARD D.
ECON	2777 E. CAMELI 1 Suite 200 1 Phoenix, AZ, 8 16021 337-2777	BACK RD ⁻ 5016-4302	(CREEK	BRIDGI	Ĕ Ŋ		and a set
.10	STRUCTURE N 285	0 0	LOCATI	MORTH TO (FOREST CITY OF	BOUN SEDOI	DÂRÝ NA	Expire DWG NO.	s-2.01
.Н	3414 Ó	3C			17	9-A-(0	02)B	<u> 601 </u>	0F_ <u>1016</u>

GENERAL NOTES:

1. General soil and rock strata descriptions and indicated boundaries are based on engineering interpretation of available subsurface information by the geotechnical engineer and may not reflect actual variation in subsurface conditions between borings and samples. The location of contacts between strata shown on the logs are generally approximate, and changes between material types may be gradual rather than abrupt. Classification of soll materials is in general accordance with ASTM D 2488-00 and is based on field observation unless accompanied by mechanical analysis presented in the Geotechnical Report.

2. The water levels and/or moisture conditions indicated on the boring logs are as recorded at the time of exploration. These water levels and/or moisture conditions may vary considerably with time according to the prevailing climate, rainfall or other factors and are otherwise dependent upon the duration of and methods used in the exploration program.

3. The boring logs indicate that the depth to groundwater was not determined (as the borings were advanced with water). However, Oak Creek is a perenial stream and shallow groundwater should be anticipated at all drilled shaft locations.

4. Sound engineering judgment was exercised in preparing the subsurface information presented on these sheets. This information was prepared and is intended for design and estimate purposes. Its presentation on the plans or elsewhere is for the purpose of providing intended users with access to the same information as the State and its designers. This subsurface information interpretation is presented in good faith and is not intended as a substitute for personal investigation, independent interpretations or judgment of the contractor.

5. A 140 1b hammer, 30 Inch free-fall, was used to drive the 2 Inch O.D. Standard Penetration Test (SPT) split-spoon sampler (ASTM D 1586-99).

6. For further information, refer to Final Foundation Design Report, DMJM Harris (July, 2006). This report is available at ADOT Contracts and Specifications.
7. All geotechnical/foundation reports prepared for this project shall be considered by the drilled shaft contractor in developing bid documents.

<u>PLAN VIEW</u>

NTS

· ·

BB12

r – –
DESIGN
DRAMM
CHECKED
DMIM HARRI

SR 179 3

F.H.W.A. REGION	STATE	PROJECT NO.	SHEET NO.	TOTAL SHEETS	AS BUDLY
9	ARTZ.	179-A-(002)B	472	760	3/23/11
		179 CN 310			

LEGEND

DMJM Harris Test Boring Location and Depth (feet)

KHD STN		DATE 05/07 05/07	Arizona dep Internoi	ARTMENT OF TRANSPORTATION DAL TRANSPORTATION DIVISION BRIDGE GROUP	A CONTRACT OF A
LONC		03/01		STA 801+	
AECOM	2177 EAST CAU Suite 200 Phoend, AZ, 8 (602) 337-2777	elback ro Sois	OA) FOU	CREEK BRIDGE NDATION DATA 1	A LONG AND
13.10	285	0	LOCATION NORTH	FOREST BOUNDARY	1 march
ILEPOST	STRUCTUR	E NO.	TO	CITY OF SEDONA	DWG. NO. SF- 2.01
NO. H	3414	03C		179-A-(002)B	<u>_664_</u> OF <u>_1016</u>

Project Name: SR179, Sedona Location: Coconino County, AZ Project Number: 5961.0000 Logged By: C. White/P.Garza Groundwater Depth Hour Date Hot Determined N/D N/D	BORING LOG NOB91 Date(s): 10/04/2005 Backhoe/Trackhoe Type: Burley 2500ST w/HQ-3 Wireline Core & HQ Adv w/GB Surface Elevation: 4,182.0' ± Location: Sta 800+62, 45' Lt, SRI79 Cst &	Project Name: SR179, Sedona Location: Coconino County, AZ Project Number: 5961.0000 Logged By: P. Garza/C. White Groundwater Depth Hour Date Not Determined N/D N/D	BORING LOG NO. <u>B92</u> Date(s): 09/25/2005 Backhos/Trackhos Type: Craned Burley 2500RT w/HQ-3 Wireline Core Surface Elevation: 4,192.0' ± Location: Sta 801+77, 63' Rt, SR179 Cst &
Elev (++) Depth (++) Depth (++) Demtiting Demtiting Demtiting Demtiting Entroval Entroval Entroval	* Recovery Pock Dust Ty Designation of Recovery Participation of Recovery Descurition Compared Recovery Descurition Compared Recovery Descurition Recovery Descurition Descurita Descurition Descurition Descurition Descuriti	Elev (ft) Depth (ft) Depth (ft) Dentriting Deriting Seele Interval Seele Type Seele Type	Y Recovery People Constitution People Constitutio
	N/A N/A S5 T T C 5-10" - - - IOQ 65 - - - Detor.289 Sw S/MH - - IOQ 65 - - - C/VC - - - - Note Grades area - - - Note Grades with Gravel Below 3.5" - -	+ ^{Hα3}	SO KO KIA N/A N/A N/A SILTY SAND & GRAVEL (SM-GM) Docations to Sume Cobbies, Considerable We Co-stor- VC 20-30- C 50-50- C 70-90- WW VS - C 70-90- C 70-90-
- 4,172.0 10-	100 10 B-10* SILTY SANDSTONE TO SANDY SILTSTONE DEBMIT FORMATION Reddleh Brown, Variaby Weit to Poorty- Camentried, Fine Arabies Sithy Sandstone Typically Repost-Landsmited Medium Thick to Thick Subhorizontal Medium Thick to T		100 100 100 0"-10" SIL TY TO GRAVELLY SANDSTONE W/ Willion Status Willion Status Willion Status Work MC - Willion Status Work - Willion Status - Work - - - Status - - - Status - - - Considerable Durarits of Werkenunded - - D*-10* - - - Status - - - Considerable Durarits of Werkenunded - - D*-10* - - - Status - - - Status - - - Osciential - - - Oscinstration - -
- 4,167.0 15- 	100 15 5-10°.80°	- 4,177.0 15-	100 70 Image: Strate of Yery to Extremely Soft 100 70 Image: Strate of Yery to Extremely Soft 100 70 Image: Strate of Yery to Extremely Soft 100 70 Image: Strate of Yery to Extremely Soft 100 70 Image: Strate of Yery to Extremely Soft 100 5=200- Strate of Yery to Extremely Soft 100 5=200- Strate of Yery Soft 100 5 Strate of Yery Soft </td
- 4,162.0 20-	100 5 VC S-15* VC Random Deo ES -		100 50 Sw S/MH Special form of the second form of the s
- 4,157.0 25-	50 20 BKn Random Deo ES - Bkn Statement Stat	- 4,167.0 25-	100 100 Sight Schultzer Switcher Schultzer Schul
- 4.152.0 30-	90 40 40 5 - VC/C 5-15*,70* HW VS -	- 4,162.0 30	100 100 - Note: Recovered Core from (5.7' to 18.2' is Note: Recovered Core from (5.7' to 18.2' is Note: Second Pairs of New Vertices Second Pairs of New Vertices Joints Present Before (5.7' Note: Sheer Zone drong New Verticed Jointial Core from 18.2' to 20.3' Thick: Becourse of Friddle Becourseed Sondercore Material
	15 0 Bkn Random HW VS - Private and Decomposed Fridake and Decomposed		IDO 85
- 4.142.0 40-	TO 10 VC Random C BOBS C BOBS VC S/M4 S/M4 S/M4 Reddtah Brown Predombantly Yery Tel-	- 4,152.0 40	the sector of the sector
- 4,137.0 45	100 40 C 5°-15° C Storage		Historia de la risco transmissione and transmission
4,132.0 50		50-	Strij Send Subirtizani Shere But Contrambia Dear Cartan Strifae Note: Core Clearly Brites Note: Core Clearly Brites Handon Very Clear Subcont Haded and Tight Buildering Frainwe to 35.5" STOPPED CORING # 36.0"
·····			

		and the second
72007	na\5961\Prod	\geotek\6lbloofds02.dgn

Projec Locatic Projec Logged	t Nam an: C t Num By: Gro	e: Sf ocon ber: P. Ga under Hour	R179, Se Ino Cou 5961.00 arza/C.	dona unty, AZ 00 White					BOR Date() Rig & Surfa	ING Borli Borli De El	LO 9/23 ng Ty evoti Sta	IG N 5/200 /pez	10. <u>B93</u> 5 Craned Burley 2500RT w/H0-3 Wireline Core 4,178.0° ± 53, 65° Lt, SR179 Cat £	Projec Loogt Projec Logge	of Nam ton: C of Num d By: Ono h	le: S locol ber: P. G undire	R179, S nino C 5961.0 arza	Sedona ounty, AZ 0000		<u></u>	<u> </u>	-	BOR Date(Rig & Surfa Locat	ING a): C Bori ce El Ion:	ing T levot	3/200 3/200 ype: 1on: 8024	NO. <u>B94</u> D5 Craned Burley 2500RT w/H0-3 Wireline Core 4,180.0' ± -28, 18' Rt, SR179 Cst £
	Depth (ft)	Drilling Operation	Crtti Rate (min/tt) Sample	Sample Type (Bloeccurts)	1. Recovery	Rock Quality Decignation (RQD)	¥ Fluid Recovery	Speeling of Discontinuities	Orlemetica of Discontinuities	Degree of Vecthering	Relative Rook Hardnes	Graphical Log	MATERIAL DESCRIPTION	E S	recent: (++)	Defiling Operation	Critit. Rotte (mitr/44) Somple	Interval Sample Type (Bicecounte)	1 Iscovery	Nock Quality Designation (ROD)	X Fluid Recovery	Spealing of Discontinuities	Ortentation of Discontinuities	Degree of Neathering	Relative Rock	Graphical Log	MATERIAL DESCRIPTION
- 4.173.0		HQ3	3.4	HΩ	80	0	50	N/A	N/A	N/A	N/A		COBBLES, GRAVEL & SAND (GP-CM) Some to Considerable LO' to 40 Bouklore, Michaiy Bir Go Braded Cobles and Drawn, Predominantly Subangular Coarse Gradned Sand, Nor-Plantic, Gray to Brown, Molat, Dense Notes Ock Creek Channel Abruham with Net-	4.175.0		HQ3	2.7	на	ÉO	٥	50	N/A	N/A	N/A	N/A		GRAVEL (GP-GM) Numerous Subrounded and Rounded Cobblee and Boulders. Predoalmently Subrounded end Rounded Gap-Greaded Gravel, Consideratie Coerses Subraguler Sand, Some Non-Plastic Fines, Notet, Owner Note: Sak Creek Channel Alkukum
4,168.0			3.2	на	a5	20			<u> </u>				and Linestone Notes Core Blocked Off at 4.3" and 9.0" No STI Taken at 6.0" Due to Large Sandrome Boukler from Approx 9.2" to 1.3" SILTY TO GRAVELLY SANDSTONE W/	4,170.0	- - - 10		3.1	на	95	50		VC			-	11111111111111111111111111111111111111	Note: Core Blocked Off = 3.5' and 7.5' SIL TY SANDSTONE deDatt PORATION Reddish From, Very Hell-Committed, Partially
- 4,163.0	- - - 15-		3.8	На	100	oot		C TO VC	0*-10*	sw	мн	- - - - -	MINOR SANUT SIL ISTURE DEBAIT FORMATION Graydah to Dark Reddish Brown. Prodominarity Sightly Bechtmard, Soff to Netflay Siloffied Fine Grained Sand with Considerable to Sone Sit and Vorled Considerable to Sone Sit and Vorled	4,165.0	- - - 15		2.7	на	100	100			5°-15°	- - - - - - - - - - - - - - - - - - -	S/ MH	•	auctrate raise or same said and sail set in Subhritzenik Very Thick Sequence of Poory-Defined Medua Thick to Thick Bede with Some Faint Rigol-Lashartion Notes Come Typicady Sightify Broken by Metrice and Secharised Parting Separations, Fee Non-Sedding Fractures
4,158.0			3.0	HQ .	100	45		VC to C	0*-10*, 45* 0*-15*, 10*-40* 70*-90*		VS to ES		Note Sealed for Commany Appendiations of the Common Seale Se	- 4,160.0		-	2.7	Hα	100	70		vc	5*-15* 80*-90 50*-20 Rendor		vs	-	Note: Near-VertIcal Frequence Filed and Kinded by Mr to Mr of Calotte from UTS' to 1840 SANDY SILTSTONE/
- 4,153.0	- - - 25-		3.0	нa	100	100		MC To	0*-10* -10*,70 -10* -10* -10* -10* -10*	sw	S/MH		and Nechanical Parting Separations Notes Few to None Non-Redding Breaks In Core from 12.5 to 16.2 Notes Very to Extremely Soft and Very Close to Close Arokan Sandy Sitistane Lana from 15.2 to 18.5	4,155.0	25		0.6	5(3-4-8) HQ	30	0		vc	Randor	n Dec	VS/ ES		SHEAR ZONE BIERRIF FORGATIONO Raddiah Brown, Highly Nacthered to Decomposed and Fridoley Pradowinantity Madua to High Pratholity Gavey Sitt with Fine Grained Sand Notes Poesible Shoot Zone, Very Poor Becovery of Randowy Broken, Becovery of Randowy Broken, Becovery of Randowy Broken,
- 4,148.0	- - 30		3.2	ΗQ	100	80		vc			vs	· ·	Note very industry very Goss Spaced Industry, Expensional and Control of Con- Catality Head Fractures in Naderately Beathered Sitty Sandstone from 18.5 to 20.9 Notes Strong Fine Grained Sitty Sandstone from 2.9 for 23.0 for 28.0 for Return Beaking Separations or Jointe Specery Disping Cabits Dear Jointe Specery Disping	4.150.0	- - - 30	HQ(3)	1.6 1.6	HQ	30	20 20	50		5*-20* 45*	- sw	S/	- - - -	SIL TY SANDSTONE
- 4,143.0	- - 35		3.1	, но	100	100		MC to W	0*-15*	SW	s/mh	- -	Note Grades with increase in Sit Bolow Approx 27.0°, Extremely Soft, Poorty- cemented Sitetone Lens from 23.0° to 23.5° Note Recovered Core Below 23.6° Yery Sightly Broken by Moderately Cose to Bibly Spead Ratural and Mechanicat	4,145.0	- - 35-	- - - - -	2.7	на	100	95			5*-10*,85 40*,85 5*-15*				Raddish Brown, Very Rei-Cenented, Partiely Silorited Fine Grahad sand and Sil, Flat to Subhratzontel Very Thick Sequence of Poorty- berthout Medium Thick to Thick Beds with Some Fahrt Replei-Lambation Notes Core Typically Sightly Broken by Hetural and Mechanical Parting Separations few Non-Bedding Fractures Notes Soveral Mechan to Steach-Diochon Tight
- 4,138.0	40	- - -	3.1	HQ .	60	60		THR	NR	,	NR	- - - - - -	Parting Separations Notes Core Broks Off at 39.3° and Lost Down Role	- 4,140.0	- - 40		3.8	HQ	100	98		- MC	40°-55 5°-15°			-	and Slottity Open Plenar Joints free 30.8" to 32.1"
- 4,133.0	- - 45- -					~							CORE PULLED UP SHORT & 39.3	- 4,135.0	- - 45		3.3	но	95	95		VC	5"~15"			- - - -	Noter No Recovery from 45.75 to 45.0° Due to Re-drift of Short Pull Off from 45.0°
_	- - 50	-		· · · · ·										- 4,130.0	- - 50		3.9	ΨΩ.	100	100			5*-20*			-	Notes Possible Loss of Recovery from 51.0"
 -	- - 55- -	- - - -												- 4,125.0	55		3.8	HO	95	95		*	5*-15* 45*	-		-	STOPPED CORING . 56.0
-	- 60													4,120.0	60-												
6/24/2087	<u>.</u>	ni\5%	L'Ar-éd'(gie	tek Bibleof defi									······································]

6/24/2007 ni\5961\Prod\geotek\61bloofds03.dgn

Looat I Projec Logge	on: Co nt Numb I By:	oconi xer: 1 P. Ga	ino 5961 11 Z d	County, AZ					Date(a Rig &	Bor 1	9/22 ng Ty	/200 pe:	5 Craned Burley 2500RT w/HQ-3 Wireline Core
Cept Not Det	Grou h ermined	Incluiant Hou N/	9	Date N/D					Surfac Locati	ion: S	evoti Sta	on: 802+	4,183.0' ± 50, 30' L†, SR179 Cs† €
	Depth (ft)	Ortiting Operation	Orill Rate (ain/H)	Sample Interval Sample Type (Biomounte)		Rock Quality Designation (ROD)	% Fluid Recovery	Spaning of Discartinuities	Urteniation of Bieconfinulties	Degree of Monthering	Reletive Rock Kardwee	erophical Log	MATERIAL DESCRIPTION
	-	HQ3					75	N/A	N/A	N/A	N/A		SILTY GRAVEL (GM) Numerous Subrounded and Rounded Cobbies and Bouldars, Predominantly Subrounded and
			2.2	HQ	6	• •							Hounded Cap-Greded Gravel, Some Subargular Sand and Non-Plastic Pines, Molet, Gray to Dark Brown, Dense to Very Danse
- 4,178.0	5												Notes Dak Greek Channel Aluvium
	-				,								Note No SPT e 6.0° Due to Beselt Bouider
			2.4	на	5	0 0						-	
- 4,173.0	10						0						Note: No SPT a 11.0" Due to Boulder
	-		NR	На	8	5 Q		—		1			_ ·
- 4,168.0	 15—							<u> </u>		ĺ			
	-						1	VIII-	5*-15*.40*	1707280	vszs	-	SILTY SANDSTONE Generatif formation
	-		3.0	на	9	5 90	·		5 °-15°	SW	S/MH	-	Reddleh Brown Very Rel-Cenented and Partially Skielfied Fire Grained Sand with Sith Subbortzontal Thick Bed with Faint Ripple- Lumination
- 4,163.0	20							MC	5"~15",75"			- <u>-</u>	Note: 75° Dip Fracture Healed with Caloite. from 20.5° to 20.75°
	-											- -	SANUY SILISIONE GERMIT FORMATION Reddingt Browny Very Poor Recovery of
- 4,158.0	25-		0.4	HQ	10	0		<u> </u>				-]	to Sity Fine Grained Sand Noter Foor to No Recovery of Very to
												-	extremely weak Materia vittin Interval OVEAR-VERTICAL SHEAR ZONE 71, Top and Botton Contract Dupting are Informed and Approximate Bodding Structure
	_		0.2	но	4		0	Bkn	Rdm	Dea	ES	 	inceremanate, Spacing and Attitude of Discontinuities Measured where Possible In Short Intervals of Recovered Material
- 4,153.0	30—						j	E				- - -	
]			5(6-5-5)].				-	• .	
			o.a	но	3	5 0	75	F					Note: Internittent Fast and Slow Drilling from 34.0° to 36.0°, Recovered Very Soft and Friable Sandy Siltatone from
- 4,148.0	35						{	vc/c	5"-15"	HW/ Deo	VS/ ES	- -	34.8" to 36.0"
			1.6	NO		0 25		Bkn	Rdm	Dec	ES	· -	Note: Extremely Fast Drilling, Mininal Recovery of Extremely Soft and Fridule Sandy Sitiatons from 36,0" to 30.0"
- 4,143.0	40—							c		MW	V\$/S	-	SILTY SANDSTONE GENET FORMATION Reddlan Brown, Very Rel-Comented, Partially
	-						1					- - -	Silicified Fine Grained Sand and Silip Fart to Subharizantal Very Thick Bed with Some Foint Ripple-Lowination
	-		2.4	НО	10	0 100							Note: Care Below 40.0' Very Skyhity Broken by Few Widely Spaced Natural or Mechanical Parting Separations
- 4,138.0	45			·	<u> </u>			**	2-12-	SW	S/ MH		SANDY SILTSTONE/
	_												GERNIT FORMATION Reddish Brown Friebles Predominantly Madkus to Low Plasticity Clayay to Sity Fine Scenad
- 4,133 0	50		2.0	HQ	7	5 75			70-80	<u> </u>		ŀ.	Send Notes Probable Shear Zones Very Poor Recovery of Rendenty Sheared and Decomposed Silistom and Sandstone Material Between
	-				-+		4						Open Hear-Vertical Fractures with Moderately to Highly Resthered Kell Rook at Top and Bottom of Interval Notes Social and Interval
	_		0.8	но	2	5 10		Bkn	Rdm	Dec	ES	-	and/or Backing Structure Indeterminate from Pour Recovery and Decomposition of Material
- 4,128.0	- 55-								70-20			[SILTY SANDSTONE HERART FORMATION Raddleh Brown, Predominantly Very Wel- Comented, Partially Silicified Ripple-Laminated
•	-						1	C711C	5"-15", 50"	SW	SZ MH	-	rme Graned Send and Sith Flat to Subhorizontal Bedding Note: Koderately Reathered Zones along Netwicker Vertholl Frectures at Top and
	-		1.6	НQ	· 6	0 50		Bh-	85*	MW	5	- 	Bottom of Section Core Noderately to Signify Broken by Parting SANDY SILTSTONE/SHEAR ZONE
- 4,123.0	60—	1					<u>(</u>	BKn	Rom	i nea.	ES	L -	GERNIT FORMATIONS See Next Page

									_						Page 3 of 3							
Projec Locati Projec Loggec	oni C oni C of Num i By:	e:S ocor ber: P.G	R179 11no 596 arza	, Se Cou 1.00	dona unty, AZ 00						BORING LOG ND. <u>B95</u> Date(s): 09/22/2005 Rig & Boring Type: Craned Burley 2500RT w/HQ-3 Wireline Core											
Cept Not Det	Gro h ernined	Hindhind Hid N	ter ar /D	Do N	ite /D	•					Surfac Looati	e El Iona	sta (on: 802+	4,183.0' ± 50, 30' L+, SR179 Cs+ €							
Elev (?t)	Depth (#1)	Drtiliteg Operation	Orill Rate (min/ft)	Sample Interval	Sample Type Å (Bloecourts)		T INCOVERY	Rook Quality Deelgnation (ROD)	% Fluid Recovery	Specing of Blacentinuities	trientation of Discontinuities	Degree of Neotherling	Relative Rock Hardness	Graphical Log	MATERIAL DESCRIPTION							
	-	HQ3	1.6		на	. 6	50	50	75					•	SANDY SILTSTONE/SHEAR ZONE							
	-		0.2		нο	. 1	10	٥						•	Inclusion from Very Poor to Minimal Recovery of Decomposed and Frieble Predoktivetty Median to Los Plestotry Dexys to Skty Fine Drahwed Sand Northe Frobable to Pear Zone; Fast Drilling and							
- 4,118.0	65	4								ļ					Sheared and Decomposed Stratone and Sandetone Material within Infarval							
	-	ł			5(0-3-0)										with Moderately to Highly Vestimated Vell Rook at Top and Bottom Top and							
	-	1			3(0-0-0)					8kn	Rdm	Dea	ES		and Approximate Hotel Specing and Oriental of Fractures							
'			0.6		HQ	11	15	0				ł		• -	end/or Bedding Structure Indeterminate from Poor Recovery and Decomposition of Material							
- 4,113.0	70-	1										-		• -								
	_	1			S(8-5-10)							1			SILTY TO GRAVELLY SANDSTONE							
															7 GERIET FORMATION 8 Reddish Brown, Very Weil-Comented, Partialy 5 Sildfied Fine Grained Sand and SBY with							
	-		2.0		HQ	1	55	20							Some Fine Subrounded to Rounded Graves Fist to Subhorizantel Bedding with Some							
4,108.0	75—	1								VC	<u>5'-20'.</u> 85'	SW	MH	-	Hotes Intensely to Very Intensely Broken Below 75.0							
	_			E		;						1			STOPPED CORING . T6.0'							
	-	ł		⊨			ĺ			L												
	-									<u> </u>												
4,103.0	80-]										1										
	_			E																		
	-								•]										
		1		—	1							1										
	85	1]										
	. –	-			1					 		-			· ·							
	-	1			4																	
L	90-	1		E	1				L		·	1	ľ									
															i							

6/24/2007 ns\5961\Prod\geotek\61blocfdsØ4.dgn

DESIGN

DRAW

CHECKED

Project Location:	Nome: S : Cocol	R179, nino C	Sedona County, AZ					BOR 1 Date(s	NG }: 09	LO(3/08/	3 NO /2005	& 09/09/2005		Proje Loogi	iot Nam	e: Sf ocon	179, 1 1100 C	Sedo Count	na y, AZ					BOR Date(ING #): (LC 19/08	IG N 3/200	10. <u>896</u> 05 & 09/09/2005
Project I	Numbers VIII. V	5961. /hlte/	0000 P.Garza					Rig &	Barin	g Typ	xes: E ¥	Aurley 2500RT w/HQ-3 Vireline Core		Proje	ict Num ict Byri	bert C:Wi	5961.(0000 P. Ga	178					Rig &	Bori	ng T	ypet	Burley 2500RT w/HQ-3 Wireline Core
Depth	Groundwa	nter our	Date					Surfaa	e Ele	vatio	n: 4, 1 03+17	98.0' ±			Qro th	undwa:		Date						Surfo	De El	evat Sta	ion: ans-	4,198.0' ±
Not Determ	ined N		N/D		i	. i			un: 3		10011	, II, EI, JAHJ CAL 2	-11	Not De	termined		<u></u>	N/D	<u> </u>			-				110 110	T	
		ŧ_	_ <u>A</u>	È	£s				농물	2		MATERIAL		E	£	-8	f.	_	a fi	2	£s		at te	동물	눇문	8	-	MATERIAL
E 3 2	E E	E			13 g 13 g 13 g			in the second se		훈문 		DESCRIPTION		÷	ŧ	Ē	ËŽ∣a	Ĕ		No an	38	Flutd			1	te le		DESCRIPTION
	68 H03	853			225	75	N/A	55 N/A	83 N/A	<u>분물</u> N/A	<u>59</u>	ntilede Fill - Roedway Enbankment		ū	8	농춘 HQ3	0.3 8	[음 	<u> </u>	25	0	- 1	ðā	20-10-	22	82	183	SANDY SILTSTONE Control
	1										786	L. T. SANU (SM) xxanicrat Cobble, Considerable Widely Grade xxal, Predominantly Fine Grained Sand, Nor	4		-							٦.						SEGUIT FORMATION Note: Fast Drilling and Poor Recovery from SLO to 86.07 Recovered Material
	-	1.9	на	10	0						R I	astio to Lew Plasticity, Brown, Molst, Denn	•		-		0.7		HQ	40	· o				HW	vs	-	Composed of Fridde rate Grands Sity Senderons to Sendy Sitetone Very Intensely Broken by Numerous and Bandes Descriptions
4,193.0	5-		14. 14			10					8000 1000 ∎	n-Nado FII - Bridge Abzitgent FII	-11	- 4,133.0	65								VC	5-15 30-35 80-85	Dec	ES		
	1		\$(33-14-19)	+-					ł	1000	S	LTY SAND & GRAVEL (SM-GH) The Cobblem to Small Boukders, Considerable			-				···· · ·······························			-		& Rdm				Notex Extremely Fast Drilling, Winlined Recover from 66.0" to 59.0"
	-		- HD									any graded grave, predaministry rine whet Sand, Non-Plastic, Brown, Variable www.to.Dense			-				10				· ·	·	{		J. "	
	L	1.3	ЛЧ	20				•			N N	nter Care Blocked Off a 8.5" Iter Depth of Fill Inferred from 5 Inch. Section of Oid Concrete Reacvered			- 70-		- F - F		лч	50	ľ				₹ 1 ₹	S/VS to ES	` 	SILTY SANDSTONE
	~					┥╽						in 11.07-16.07 Run and Ae-Bullt Bridge Place		4912.040						_			VC/C]- [Redding Brown, Predominantly Vel-Cepented Fine Grained Sand and Sith Plat to Subjectivents Wary Thick Sequence of Vedic
	1		S(10-6-5)												-									8085		[ŀ.	Thick to Trick Baca of Ripple-Laminated Sitt Sand with Occasional Interbedded Thin Lanes of Sandy Sitt
	-	2.2	, HQ	30	0				· .			•			-		3.9		HQ	100	25		С 	5-20*	MW to	VS to	· .	Note: Typically Moderately Broken Core aboy
4,183.0 1	5			_	ļ							····		4,123.0	75-						<u> </u>	~	ç/	60°-65 80°-65			ŀ .	17.0" with Namerous Closely Spaced and Intersecting Steep to Near Vertical Frantures, Nexy with Highly Plastic Sin
	-		S(10-5-4)		ŀ							ak Graek Gharatel Alkuvium ILTY & SANDY GRAVEL (GP-GM) Statisfication Edgin Graded-Cobbien and			-								VC	5 -20	-		·	Caty Fillingle Troat 3%, to 3%, Junck
	1	3.1	на	50	0							ravel, Some Boulders, Frequent Pockets an In Lenses of Fine Grained Sand, Non- astin, Grav. Dense			-	1	3.7		на	100	70		мс	5-20			1. •	Note: Yery Well-Cemented and Pertially Sillotfied from Approx. (1.0' to 82.0)
4,178.0 20	⊳ –∣											otes Possible Oid Kan-Mode Fill and/or Vieturbed Material to Approximately 2007 Bacth		- 4,118.0	80-			: 				•	VCZ]	Intensely Broken from 80.0" to 82.0"
	1		S(11-34-7)								- "	rten Overeiza Material Composed of Wei- Rounded Clasts of Predominantly Base Milit Langer Servictore and Unsettore	#		-						1		č	80 -85	57	57 M	1	Note: Increase in Sit, Moderately to Neekly
	4	NR	HQ	55	0							otes Offfkult Drilling; Core Blooked Off at 1948, 23.0, and 25.0			-		4.8		на	100	85		c			ļ	╞.	Spaced Tight, Pertially Heeled, and/or Indipient Parting Separations and Senty-Opping Fractures Below 53.5'
4.173.0 2	5-													4,113.0	85-			e î					VC	5-15-	MW	vs/s		
			5(50719																						+	┢──	<u>†</u>	STOPPED CORING . 86.0'
	7														-		E]			
	<u> </u>	3.9	. 12								- <mark>S</mark>	ILTY SANDSTONE Erlet Formation	. - '		-					<u>}</u> .								
	~_						MC to W	<u>a-1a-</u>				mented, Partially Silotfied Fine Grained and and Silts Flat to Subhorizontal Yery Nok Sequence of Medium Thick to Thick Ber	da		30													
	1								5W	s/mh		" Ripple-Laninated Sitty Sand with Occasion herbedded Thin Lenses of Sandy Sitt view No Non-Bedding Fractures in Core	•															
		4.6	HQ	100	70		C to	0*-10*, 85*,			- 50	the Asian and Steeply-Dipping Fractures alow 33.0°				<u> </u>									<u>.</u>			
4,163.0 3	5	L	·				VC	25*-35*			-]	Noderately Reathered Fine Grained Sit Sandatone to Sandy Situatonn in 36.0" 1 41.0" Runs Likely Losses in Friable and	ž															
	-		2	1.	:		VC to Bkn	Rdm	HW to Dec	ES/S	N	becomposed zones from Approx. SLO to 3LO and from 40.0 to 40.0" the New-Vertical Planar Fracture Filed with Los of Samth Clau from income 78.0"	th															
	-	2.5	на	45	25		vo/c	0-10	MW	s	×	to 39.0 to																
- 4,158.0 4	0						Bkn	Rdm	Deo	ES	-																	
	7						-vc	Rdm	HW	VS/ ES	- S	ANDY SILTSTONE GERNIT FORMATION																
	_	1.5	на	40	٥							redominantly Low to Medium Plasticity Sitt 20 Clayer Sitt with Some to Considerable Fir refeed Sand	1															
- 4,153.0 4	5						<u>Bkn</u>	Rdm	Deo	ES	- `	Extremely Weak Material Witten Interval NEAR-VERTICAL SHEAR ZONE (1) Top and Bottom Contract Depths Ara Informad	'															
	1			+		1 1					- [and Approximates Bedding Structure Indeterminate, Spacing and Attitude of Discontinuities Measured Where Possibi																
	4	0.3	на .	15							*	h Short Intervals of Recovered Naterial Its Orlier Noted Extremely Fast Orling, K	,							•								
4.148.0 54	1	1									^ _ *	the Extremely Fast Orling, Writed Recover, from 46.0 to 51.0	х															
	Ĩ-	i				$\left\{ \right\}$					- *	the Intermittent Fast and Slow Drilling from SLO' to 56.0, Moderate Recovery of Extremely Soft and Frieble Sandy																
				ł							-	SEtatona																
		L7	на	56	10		VC .	5 -15 30 - 55*	HW to	VS to ES																		
4,143.0 5	5							Bdm.																				
							├┣				- [
	1	0.3	HQ	25	0						*	Ster Extremely Fast DrSing and Very Poor Recovery of Extremely Soft and Friddle Sandy Situations from																
4,138.0 6	ᆈ	ł			L	<u> </u>				l	╧┯╼┫╸	Contro but Control																
												, •																
												······································																

n:\5961\Prod\geotek\61blocfdsØ5.dgn

DESIGN

DRAWN

CHECKED

	F.H.W.A. REGION	STATE	PROJECT NO.	SHEET NO.	TOTAL SHEETS	AS BUILT
· .	9	ARIZ.	179-A-(002)B	481	760	3/23/11
TFS.			179 CN 310			

1. No new shaft drilling is permitted within 4 shaft diameters measured center to center of an adjacent shaft until 48 hours after the concreting of the drilled shaft.

2. Construction joints not shown on plans shall require the approval of the Engineer prior to construction.

Caving conditions & groundwater are anticipated above rock socket construction and will likely require soil stabilization.

4. If slurry assisted drilling is required, the Contractor shall provide four equally spaced $2\frac{1}{2}$ " nominal diameter PVC pipes (Sch 80) to allow for integrity testing of the drilled shafts. These pipes shall be securely tied to the inside of the reinforcing cage and shall extend from the bottom of the reinforcing cage to 12° above the top of drilled shafts are provided by the case of the reinforcing cage to 12° above the top of drilled shafts with caps at each end.

5. The 48" diameter Drilled Shafts (Foundation) shall be advanced to the top of rock. The bottom of shaft elevations for the 48" diameter Drilled Shafts (Foundation) shall be adjusted in the field. The minimum penetration into the rock with the 42" diameter Drilled Shafts (Rock) shall be as per the dimensions shown in the abutment drilled shaft details. Adjustments in additional quantities for Drilled Shafts (Foundation) 48" Dia and Drilled Shafts (Rock) 42" Dia will be paid per the contract unit cost for the respective item.

6. The Engineer will observe the drilling operation to verify top of sound rock elevation. If top of sound rock is encountered at an elevation that varies more than one foot from the elevation shown in the table, the Contractor shall notify the Engineer prior to placement of the reinforcement cage.

7. A confirmation shaft is required. See Special Provisions.

Top of Drilled Shaft (Foundation)

Bottom of Drilled Shaft Cap

48" • Drilled Shaft (Foundation)

Bottom of Drilled Shaft (Foundation)

42"
 Drilled Shaft (Rock)

ARIZONA DEPARTMENT OF TRANSPORTATION INTERMODAL TRANSPORTATION DIVISION 05/07 05/07 TST BRIDGE GROUP 37863 STOPHE LABYE 05/0 STA 801+ OAK CREEK PED BRIDGE 2777 E. CANELBACK RO DMJM HARRIS AECOM SUITE 200 PHOENC, AZ, 85016-4302 (AECOM 5172777 FOUNDATION PLAN & DETAILS NORTH FOREST BOUNDARY Expires 9/30/0 10624 TO CITY OF SEDONA DWG NO. S-3.05 <u>676</u> OF 1016 TRACS NO. H 3414 03C 179-A-(002)B

GENERAL NOTES:

1. General soli and rock strata descriptions and indicated boundaries are based on engineering interpretation of available subsurface information by the geotechnical engineer and may not reflect actual variation in subsurface conditions between borings and samples. The location of contacts between strata shown on the logs are generally approximate, and changes between material types may be gradual rather than abrupt. Classification of soli materials is in general accordance with ASTM D 2488-00 and is based on field observation unless accompanied by mechanical analysis presented in the Geotechnical Report.

2. The water levels and/or moisture conditions indicated on the boring logs are as recorded at the time of exploration. These water levels and/or moisture conditions may vary considerably with time according to the prevailing climate, rainfail or other factors and are otherwise dependent upon the duration of and methods used in the exploration program.

3. The boring logs indicate that the depth to groundwater was not determined (as the borings were advanced with water). However, Oak Creek is a perenial stream and shallow groundwater should be anticipated at all drilled shaft locations.

4. Sound engineering judgment was exercised in preparing the subsurface information presented on these sheets. This information was prepared and is intended for design and estimate purposes. Its presentation on the plans or elsewhere is for the purpose of providing intended users with access to the same information as the State and its designers. This subsurface information interpretation is presented in good faith and is not intended as a substitute for personal investigation, independent interpretations or judgment of the contractor.

5. A 140 lb hammer, 30 Inch free-fall, was used to drive the 2 Inch 0.D. Standard Penetration Test (SPT) split-spoon sampler (ASTM D 1586-99).

6. For further information, refer to Final Foundation Design Report, DMJM Harris (July, 2006). This report is available at ADOT Contracts and Specifications.
7. All geotechnical/foundation reports prepared for this project shall be considered by the drilled shaft contractor in developing bid documents.

PB1

DESIGN DRAINN CEECKED DMIJM HARRIS SR 179 ROUTE TRACS

FJEWJA RECION	STATE	PROJECT NO.	SHEET NO.	TOTAL SHEETS	AS BUILT
9	ARIZ.	179-A-(002)B	492	760	3/24/11
		179 CN 310			

LEGEND

DMJM Harris Test Boring Location and Depth (feet)

KHD JTN	NAME	DATE 05/07 05/07	ARIZONA DEP/ INTERMOD	ARTMENT OF TRANSPORTATION AL TRANSPORTATION DIVISION BRIDGE GROUP	A CONTRACT ON
LAL	9777 6487 6446	05/01		STA 801+	
AECOM	SUITE 200 PHOENDE, AZ, 85 (602) 337-2777	io15	OAK C FOU	REEK PED BRIDGE	Sugar a
13.10	285	0	LOCATION NORTH	FOREST BOUNDARY	1) Seguri
ILEPOST	STRUCTURE	e NO.	TO	CITY OF SEDONA	DWG. NO. SF- 3.01
NO. H	1 3414 (03C	-	179-A-(002)B	<u>_691_0F_1016</u>

Project Na Location: Project Nu Logged By: Or Depth None	me: SR179, Sed Coconino Cour mber: 5961.000 C. White/P. (Cundwater Hour Date N/A N/A	ona hty, AZ Garza		-			BOR Date() Rig & Surfa	ING s): 0 Borti be Elic ion: 3	LOG 9/28/ ng Typ svotio Sta B	2005 2005 2005 2005 2005 2005 2005 2005	0	2500RT ne Core Cst &	Projec Locati Projec Logged Depti	t Nam on: Ci t Nust By: Grac	e: SR oconi ber: { P. Ga ndwate Hour N/A	179, no (5961. rza	Sedo Count 0000 Date	na y, AZ					BOR Date() Rig & Surfoc Locati	ING s): 05 Borir W ce Ele ion: 5	LO 9/26 ng Ty //HQ evort1 Sta 1	G N /200 pe: -3 WT on: 4 802+1	D. F 5 Craned reline C 1,189.0' ± .0, 114' R	Burley ore & t, SR179	2500RT WT Adv 1 Cst @
tiev (ft) bepth (ft)	Defailling Defailon Defaile Definin/ft) Sample	Sample Type 8 (Bioeccurrie)	K Recovery	look Quality beignation (ROD)	k Fluid leoovery	spaaling of Disconfirwities	brientation of Discontinuities	legree of legthering	lardnese	Sraphical 60	HATERI Descript	AL. TION	(11)	Nepth (++)	beration	(min/tt)	Interval	Gaepia Type 8. Biomocumis)	4 Recovery	book Quality besignation ROD)	t Fluid tecovery	pooling of Necaritmutties	brientation of Discontinuities	legree of legthering	telative Rock jardness	kraphioal og		NATERI DESCRIPT	AL. TION
- 4,197.0 5-	HO (3) - (3) - NR - NR	нQ	35	0	90	N/A	N/A	N/A	N/A		Kon-Mada F111 - Bridge J SILTY GRAVEL & SAN Predominantiy Fine Gravi Motes 1.5° of AC at San Notes 1.5° of AC at San Notes Very Poor Recover 1.5° Length of Di Recovered from 0°	Abutment Bookfill D (CM-SM) el, Non-Plastio, foce y of Wateriali d, Soft Concrete to 6.0° Run	- 4,184.0	5	HQ (3)	1.5		на	100	60	75	C C C	5*-15* 5*-90* 5*-15*	NR SW	S/MH		SILTY TO I SERVET FORM Reddish Brok Committed File Score Viell-Re growsit Fice of Poorly-Du Beds with Sk Card Portial Notest Care i and Mi	GRAVELLY ITION Integrating Sounded Predo Integrated Needlu Integrated Needlu Integra	SANDSTONE and and Sili with minantly Fine zonial Sequence a Thick to Thick pole-comination d Zonee roken by Naturat ring Separatione
- 4,192.0 10-	_	X4 -6-S 0/37 HQ	45	0				- - - -			Note Fill - Bridge / COBBLES, GRAVEL & S Subrounded to Rounded & Decessional Boulders. Pri Subrounded to Rounded & Suborquiler Coorse Gratis Plastic. Moist. Brown th Note: Fill Indicated by	Abutment Backfill SAND (GP-GM) adoine and edaninantly ag-Graded Gravel, ed Sand, Non- o Gray, Dense Mon-Hattus Book	- 4,179.0			1.8		HQ	100	70		w VC	5*-15* 60*,90* 5*-13*	SW HW	5/ MH VS S/MH		dove Note: Slight Yerfi Note: Partia Note: Partia Note: Shart Note: Shart Note: Shart	4.0' tiy Open. Un col Frecture ared Noti Ro to 6.4' aily Stitcif turci Develo 5.4' to 9.8' Very Intersectio Untersectio	duiating Near- with Highly ck from Approx. led Section with ped Fractures ally Broken Zones a Kenr-Vertical
- 4,187.0 15-	- NR - NR	HQ	80	20	0	VC to C	5*-20* 80*-90* 50*-70* Bkn 5*-20*	MW	S to VS		and Concrete Frag SILTY TO GRAVELLY S GERMIT FORMATION Reddleth Brown, Typically Fine Grained Sand and S Thick to Very Thick Bod Notes Partially Siltolf	SANDSTONE y Vell-Committed lift Subharizontal ding ied Lens of Silty	4,174.0	- - 15-		1.5		но	100	45	· .	VC MC C VC/ (C 4	5*-15* 5*-15* 5*-15* 5*,0*-10*	HW SW MW	VS S/ MH VS	• •	Fracti from 9 to 12. Note: Poori Sands and Pe Dipple to 16. Note: Grades Decree	ures and Bed 9.8' to 10.7 -2' y-Committed Z trans with Nu articity Heo ng Fractures -1' s with Incre sea In Slit	ding Separations ' and fram 11.6' one of Silty mercus incipient isd Steeply- from 14.2' ase in Sand, and Gravel from
- 4,182.0 20 -		HQ	100	70		W	36		s/ 1		Considerable Produ Subraunded to Roy 12.6° to 16.0° Note: Cons Intensisi to to Fractured by Stes Subhar Izantial Par- front Izantial Par- front 12.6° to 17.4 Note: Gently Crossbadden Sillolfied Fine G Southers Reject 10	worne with some to aninonthy Fine nded Gravel from bioderchely p Fractures and ting Breaks 4' di Partially rained Sility 7 dia Comp	- 4,169.0	- - 20		1.1		на	100	90	-	₩С /VE ₩С/С {С	5*-15* 5*-15* 5kn 8kn 0*-85* 0*-10*	SW	S/ MH	• • •	16-1' Note: Care 1	to 21.6	osely Broken by
- 4,177.0 25-		HQ	98	. 70		MC VC C		-	MH .	- - -	STOPPED CORING e	26.0°	4,164.0	- - 25 -		1.4		HQ 	100	50	-	C/ VC	0°-15°	sw to WW	S		Separa Yery (Bellow	ctione with Closely Brok 21.6	Several Shart en Intervala
4,172.0 30 -		Ortifing Open NO-Wireline (HSA-Holow S GB-Gearbit	ration Core test Au	liger"		Discor VW> W3.	tinult1 10.0° 0'-10.0°		MJM	HAR		E. CAMELBACK RD 200 NIX, AZ, 85015-4302	4,159.0	30	HQ (3)	1.4		на	100	45	75		C "-15"	SW to	s				
	Hu-Hirsine Core	HT-Coing / H0-Hiroline (Lore	/ #K-9874			-0.2				(602)	331-2711	4,154.0	- 35-		1.0		HQ	80	15		VC I	0°-15° Random NR	MW	VS NR		Note: Lanin with Fract Note: Praba fram STOPPED C CORE PULLE	otad Vary So Numarcus Nav Uras from 3: bla Soft Zoi 35.0' to 36 DRING a 36.0 ED OFF SHOR	oft Silty Sandsta lied to Incipient 2.9' to 36.0' nej No Recovery 9'
											. *		- 4,143.0	- 40	Satur S-Soli R-Rin A-D-1 HQ-10	e Typ t Sport Gutt reine	tig sher- tings Corre	Qriffing Og NG-Wirelin KSA-Hollow GB-Gearbh HUT-Caein HUT-Caein HOT-Caein	Core Stem A Adv. w) uger //Hreiln		Ulacon VW 2 W 3. MC 1 C 0. VC 0	HnulH -10.0 0-10.0 -0-3.0 2-1.0 -0.2	29 D	MJM	HAR	RIS	2777 COM SUIT (602)	E. CAMELBACK RD 200 VIX, AZ. 85016-4307 337-2717
								×														<u> [*]</u>					·	<i></i>	•
																													•

Proje Load Proje Logge	ict Na rion: ict Nu ict Nu ict Sy: gr th termine	mex .S Cocol mber: P.G cunchec He	Garza	Sedo ount 0000	hna ty, AZ		- -			BC Dal Ric Sur Loc	RIN e(s): & Bo face atlor	IG 09/ ring Elev stist	-DG /27/2 Type ation a 80	NQ 2005 2005 2005 2005 2005	p	Projec Locat Projec Logge	ot Nan Ion: C ot Num d By: Gro th ermined	e: S ocoi ber: C. W undwo Ko	R179 nino 596 /hite	, Sec Cour 1.000 /P. (Det	lona nty, AZ O Garza					BO Date Rig Sur Loos	RIN s(s): & Bo face stion	IG 09 ring Elev 11 S	LOC /07/ a Typ votic ta B	3 N /200 xe: xn: 103+	10PB4	
Elev (#1)	Depth (ft)	Brilling Operation	Oriil Rate (ain/tt) Sable	Interval	Somple Type La (Bicencourrite)	% Recovery	Rook Quality Designation (ROD)	% Fluid	Spacing of	Drienhetlan of	Dearne of	Medition Ind	Hardness Graphi od I	Log	NATERIAL DESCRIPTION	Elev (#)	Depth (ft)	Drilling Operation	Grijt Rote (min/ft)	Saple Interval	Sample Type Å (Biowcounts)	T ROOMERY	Rook Qual 1 ty Designation	K Fluid	Recovery Specing of	Orlimitation of	Degree of	Neather Ing	Reichtive Rock Hordness	Graphical Log	MATERIAL DESCRIPTION	
- 4.177.0	o 5-		2.6		НО	40	G	50				/A N	<u></u>		Ick Creek Alluvium ANDY GRAVEL (GP-GM) Immroue Subraunded and Rounded Cabbles multiple Subraunded and Rounded and Rounded Gap Graded Gravel, Coarse abangular Sands Kart-Itastics Wolst- arown to Gray. Very Dense Gray. Very Bense Gray. Very Bense	- 4,194,0	- - - 5-	65	3.4 NR		Ha	40	0	7		A N//			N/A		Non-Node Fills Roadway Eubarkument and Bridge Abutinent Backfill SILTY TO CLAYEY SAND & GRAVEL (SM-GM) Same Subtraunded to Rounded Cobbles, Videly-Graded Subtraunded to Rounded crovel and Subtraular Sand, No to Maduus Plasticity, Reddish Brown to Gray Brawn	
- 4,172,0	0 10-		3.7		HQ	60	0		V V	C 5~15			1111111		SII TY SAMOSTANE (1994) - 500 - 501 - 501 - 501 - 501 - 501 - 500	- 4,189.0	- - 10-		NR		\$(50/1*) На	30	a								Note: Considerable Radical Brown, Wedine Plastic, Clayey Fine Grained Sand above 5.0' Note: Depth of Fill Inferred from Material Change and As-Built Bridge Planss Possible Native Material Below Approx. 15.0'	
- 4,167.0	• 15-		2.1		нq	100	95		C				•	- L - S - T - t - N	Left Had Brown to Baddian Brown, Very Isil -Comentiad Predaminantity Fine Groinad and with Silth - Subhorizantiti Medium Ihlak to Very Thiak Bedst Variable Faint to Strong Rippis-Lamination and Gentis Toses Bedding Nate: Becovered Care Typical Wedenately	- 4,184.0	- - 15		1.5		5(14-16-16) HQ HQ	30 75	0									
- 4,162.0	20-		1.8		HQ .	100	70				5° 5	w	5/ - WH -	-	Frontured by Close to Moderately Close Spaced Hatural and Mechanical Parting Breaks SANDY SILTSTONE (?)	4, 179.0	- - 20		NR NR		5(5-5-4) HQ HQ	35	0	5	>						(Ock Creek Channel Alluvius) SILTY & SANDY GRAVEL (GP-GM) Some Boulderse, comiderable Videly-Groded	
4,157.0	25-		1.2		HQ	65	. 45	_					-	- (R - D t t V	HERNIF FORMATION) Reddiat Brown, Altphiy Neathered to Recoraposed and Fricole. Predominantiy Low to Medium Plasticity Silt and Clayey Silt ith Same Fine Forcined Sand Nother the Forcined Sand Matheria and Very Peat and Easy Dritting from 23.8° to 23.4' host Probabile Save Zone Inferred from	- 4,174.0	25	-	2.9		НО	70	a		-						Controls and a creater regularity constrained Thin Laness of Fins Grave Dense Note: Oversize Material Corposed of Well- Rounded Clasts of Protocolinority Bosolit with Lesser Sandstone and Linestone Notes Difficult Prilling Through Cobbies and Sandstars Corre, Blackad Off of	
- 4,152.0	o 30 -		13		НО	40	30'	50		5*-15		4W 5.	е́сі - - /мн -	- - - - - - - - - - - - - - - - - - -	Preserve of Becompediaterial along Steeply Bipping Fractures at 23.4" and 23.4" ILTY SANDSTONE (HERNIT FORMATION) John Red Brown to Reddish Brown- redominantly Slightly Mediared and Very	- 4,169.0	- 30	HQ (3)	3.4		, На	75	15	_							23.0°, 24.0°, 29.0°, and 29.5° Nortes No ST Token of 21.0° or 26.0° Due to Cobble or Boulder at End of Rune SILTY SANDSTONE (HERNIT FORMATION) Light Reddish Brown, Very Nei I-Commanda,	
4,147.0	o 35-		1.8		но	.85	.65		× 4	5"			5/5 5/ WH 57 57	- El - Fr - Fr - Gr	unia found in the source of self-based of Ins Gratine Sand with site intersected Int Thin Lenses of Righty Worthered and or i v Ceenstad Sandy Sitestanes Variations almity to Strongly Ripple-Lowingted and entity Cross-Bedded	- 4,164.0	35		3.2		HQ	100	100			0I		-	- /Lau	- - - -	Perintilly Silicited Fine Criatined Sand and Silit with Same Well-Rounded Predominantly Fine Gravells Flat to Subhar izantel Sequence of Poorly-Defined Medium Thack to Thick Bods with Same Foint Ripple-Leaincetion Note: Care Typically Silghtly Braken by Natural and Mechanical Paring	e
	9 40-		1.9		но	100	80				1907.	5W /9eo V 5W		-	STOPPED CORING • 41-0'	- 4,159.0	40-		2.7		HQ.	100	100		M	0"-1 50*-1)*, 55*			- - - -	Separations: Fee kon-Bedding Fractures	
4,137.0	4 5-							· · · · · · · · · · · · · · · · · · ·							· .	4,154.0	45		2.3		HQ	95	80		V	0*-1 0*-1 70 0 Dec	0* 	4W \	V5/5 V5/	- - - - -	CLAYEY SILTSTONE/ SHEAR ZONE (?) (HERHIT FORMATION) Reddieb Room, Fridolie, Preddeliority	40°
	50-												, III			4,149.0	- 50- -		2.6		HQ: .	90	0		≥ S O S S	C NR 0°-1 80 / 0°-1 / 0°-1	0*	W W	ES S	- - - -	Noticum to High Plasticity Clayer Silt with Same Fine Scaladed Sand Note: Probable Shear Zone Inferred from Presence of Becomposed Naterial along Near-Vertical Produces at 45.0° and 49.0° and Poor Recovery of Extrementy Soft- Clayer Gauge- Like Naterial	PB 2
	55-					and Wandowski and a state white the state of the								· · · · · · · · · · · · · · · · · · ·		- 4,144.0	55-		4.1		HQ	100	100	. 1	5. Mi	; 	S	5W 8	5/MH		SILTY SANDSTONE GENET FORMATION Light Reddel Brown, Very Bel-Comented, Partiely Silotified Fire Greined Sand and Shin Rat to Subinchanta Sequence of Poortp- Dertreed liedhum Trick to Thick Bede with Some Fairt Robel-Lomination Notes Core Typically Sightly Broken by Netural and Machanical Parting Separations few Non-Bedding	DEZIGN DRAUN CRECKED
	60-		Tiple Typ Split Spor	a m for Core	Drillins, Open NG-Threfine ISA-Holow S GB-Gewpht HTT-Caeing HG-threfine	Core Core Ten A	i uger ://inrelin	10 CB		2001117 7 ≫10.0 1 3.0~1 1 5.0~1 1 5.0		DM	іјм н	IARR	2777 E. CANELBACK RU SUITE 200 PHOENUK, AZ. B5016-4302 (602) 337-2777	- 4,139,0	-60-	585 A 19	2.7 pitt Sc relia Cor virolin	VRE Hoon Those Hoo	HQ Briting Og HQ HI Han HSA Holov GB Oger bi HT T-Carine HQ HT circle	100 Core Steen /	100	Ine Gl		0.10-0 0.2-1.0 0.2-1.0 0.2-1.0 0.2-1.0 0.2-1.0		DI	мјм	- - HAI	Fractures STOPPED CORING = 60.0' 2777 E. CAMELBACK RD SUITE 200 SUITE 200	DMJM HARI SR 179 ROUTE TRA

