

City of Sedona 102 Roadrunner Dr. Bldg. 108 Sedona, AZ 86336 (928) 204-7111 sedonaaz.gov

To Whom It May Concern:

The City of Sedona, Arizona is issuing <u>Addendum #1</u> to the plans and specifications as originally issued at the time of solicitation for bids for the <u>SD-03 Back O' Beyond Low Water Crossing</u> <u>Improvements Project</u>. For any bid to be considered responsible and responsive, receipt of this addendum must be acknowledged.

As specified in the Instructions to Bidders, this Addendum, upon issuance, has become a part of the Contract Documents.

This Addendum contains <u>52</u> pages, and affects <u>0</u> changed bid sheet, <u>0</u> plan sheets, and <u>1</u> Technical Specification.

This Addendum corrects the following Technical Specification

- 1. <u>2.2.7 Construct asphalt pavement section</u>
 - **Original-** Work under this item shall consist of placement of a 2" asphaltic concrete surface on top of a 4" aggregate base course to match the existing pavement per the Geotechnical Evaluation Report.

Change to- Work under this item shall consist of the placement of a $4^{"}$ asphaltic concrete surface on top of a $6^{"}$ aggregate base course <u>per the project plans</u>.

This Addendum provides the following information

- 1. A City of Sedona Temporary Use Permit will be required for any laydown/staging yard. Contractor to coordinate location with Back O' Beyond Ranch HOA/owners in the area. Potential lots are APN 401-34-10D and 408-13-040.
- 2. Contractor water source to be coordinated with Arizona Water Company (928) 282-7092.
- 3. Drainage Design Report.
- 4. Geotechnical Evaluation Report.
- 5. Pre-Bid Meeting Agenda and Sign-in Sheet.
- 6. City of Sedona will provide community outreach and information through Beta PR.

ACKNOWLEDGEMENT

I have received <u>Addendum #1</u> for the <u>SD-03 Back O' Beyond Low Water Crossing Improvements</u> <u>Project</u> as described above and acknowledge it as part of the Contract Documents for the project.

Signature

Date

Print Business Name

Public Works Department

Addendiam # 1 issued by J. Andy Dickey, PE, Assistant City Manager / Director of Public Works

J. Andy Dickey, PE Assistant City Manager / Director of Public Works

improvements. Payment will be made at the contract unit price bid, and such payment shall be compensation in full for the complete removal and disposal of this item.

2.2.5 <u>Remove and dispose miscellaneous traffic barrier posts</u>

This work shall consist of removing and disposing of the existing traffic barrier posts within the demolition area per the project plans. Contractor is responsible for damage to adjacent improvements. Payment will be made at the contract unit price bid, and such payment shall be compensation in full for the complete removal and disposal of this item.

2.2.6 Earthwork cut/fill/rock removal

Work under this item shall be in accordance with MAG Specification Sections 201, 206, 211, and 215, and General Conditions Section 58. This item of work includes excavation, embankment, and rock removal for the construction of the shotcrete channel bank, bottom protection, and concrete box culvert. Contractor is responsible for damage to adjacent improvements. Payment will be made at the contract unit price bid, and such payment shall be compensation in full for the complete excavation of this item.

2.2.7 Construct asphalt pavement section

Work under this item shall consist of the placement of a 4" asphaltic concrete surface on top of a 6" aggregate base course per the project plans. Asphaltic concrete shall be placed in conformance with MAG Specification Sections 321 and 322 and per the project plans. The surface course mix shall be a Marshall Mix Design in accordance with MAG Section 710. Aggregate base course shall be placed in conformance with MAG Specification Sections 310 and the material shall meet Section 702. The maximum plasticity index shall not exceed 7. Base material shall be placed in uniform layers not to exceed 6" in depth. Each layer shall be bladed to a smooth surface conforming to the cross section shown on the plans and shall be watered and thoroughly rolled to obtain a compaction of 100% maximum density, based on a modified proctor Payment will be made at the contract unit price bid, and such payment shall be compensation in full for the complete construction of this item.

2.2.8 Install Precast 3'x12' concrete box culvert

Work under this item shall consist of the installation of a 12' span and a 3' rise Jensen Precast Type 1 and headwalls or approved equivalent concrete box culvert per the design and approved specifications and shop drawings provided by Jensen Precast to the Engineer, Contractor and the City of Sedona. Contractor is responsible for damage to adjacent improvements. Payment will be made at the contract unit price bid, and such payment shall be compensation in full for the complete construction of this item.

75 Kallof Place Sedona, AZ 86336

P.O. Box 3924 Sedona, AZ 86340

> 928.282.1061 www.swiaz.com

Engineering an environment of excellence.

Back O' Beyond Low Water Crossing

Back O' Beyond Road Sedona, AZ Yavapai County

Prepared for:

City of Sedona 102 Roadrunner Drive Sedona, AZ 86336

Job #21240

Shephard AWesnitzer, Inc.

TABLE OF CONTENTS

INTRODUCTION	1
OBJECTIVE	1
PROCEDURE	1
RESULTS	2
CONCLUSION AND RECOMMENDATIONS	3
REFERENCES	3
SOFTWARE	3

APPENDIX

Vicinity Map 1994 SCS Study 2005 SWMP Study Stream Stats Regression Data Preliminary Flo2D Model Data CulvertMaster Output FlowMaster Output

INTRODUCTION

The existing low water crossing channel on Back O Beyond Road in Sedona, Arizona conveys stormwater runoff primarily from the Chapel of the Holy Cross residential area that is east of Hwy 179. During large storm events, the low water crossing floods, preventing residents and tourists from being able to cross the roadway. A large amount of sediment is usually deposited in the roadway after the storm events, and requires the Public Works department to clear the roadway. The proposed project involves placing a concrete box culvert beneath the roadway in order to pass stormwater runoff, sediment and debris under the road while allowing safe travel during storm events.

The project area is located in Section 25, Township 17 North, Range 5 East, of the Gila and Salt River Meridian, Yavapai County, Arizona. A vicinity map can be found in the Appendix.

OBJECTIVE

The purpose of this report is to summarize the major design components of the proposed project. The proposed culvert is intended to provide capacity to pass the 25-year storm event, with the 100-year storm event overtopping the roadway with a depth not exceeding 12 inches.

PROCEDURE

The existing site was surveyed by Shephard Wesnitzer, Inc. to provide topographic and Right of Way background for the construction plans. A geotechnical investigation was conducted by Western Technologies Inc. to provide soil and rock information in the drainage channel and road crossing area.

Existing drainage reports and studies were reviewed in order to determine the design flowrates for the existing low water crossing on Back O Beyond Road. The 1994 SCS study shows a flowrate of 344 cubic feet per second (cfs) for the 25-year storm event, and 680 cfs for the 100-year storm event. The Stream Stats regression data shows a flowrate of 364 cfs for the 25-year storm event, and 724 cfs for the 100-year storm event. The preliminary Flow2D model shows a flowrate of 329 cfs for the 25-year storm event, and 586 cfs for the 100-year storm event. The 2005 Sedona Storm Water Master Plan study shows a flowrate of 1580 cfs for the 100-year storm event. Excerpts from these studies and models can be found in the Appendix.

An existing 6" high pressure gas line runs along the northern edge of Back O Beyond Road at a depth of approximately 6'. The gas main is the only utility line in the roadway and is the main design constraint. UniSource potholed the gas main on June, 9th 2022, and SWI field surveyed the elevation of the top of the pipe.

In order to provide capacity to pass the 25-year storm event beneath the roadway without disrupting the gas line, a 3' x 12' precast concrete box culvert was selected. A precast concrete box culvert will expedite the construction timeframe and accept traffic loading for the roadway which has to remain open during construction. A drop inlet placed immediately downstream of an existing rock shelf will collect stormwater runoff into the box culvert. Stormwater will then pass through the culvert, and outlet into the existing drainage channel on the south side of the roadway.

Existing drainage easements on APNs 408-13-044 and 408-13-042 provide access to the existing drainage channel. An additional easement on APN 408-13-052 has been obtained in order to construct the proposed culvert crossing. See the Improvement Plans in the Appendix for easement locations.

<u>RESULTS</u>

Bentley's CulvertMaster was used to determine the size of the proposed culvert. In order to both provide capacity for the 25-year storm event, and stay above the existing high pressure gas line, a 3' x 12' box culvert was selected. The 12' span was selected to minimize the width of potential rock excavation required for the culvert installation, and provide for sediment conveyance. The culvert capacity is 386 cfs with 6 feet of headwater depth at the inlet. The drop inlet for the box culvert will be cut into the existing rock shelf on the upstream side of the roadway in order to collect stormwater runoff into the box culvert. The banks of the drainage channel adjacent to the box culvert will be stabilized with shotcrete to help prevent erosion.

A 3' rock gabion basket barrier wall is proposed on the upstream eastern side of the culvert to direct runoff into the drop inlet and protect the roadway. Guardrails are proposed to be located on both the northern and southern edge of the roadway over the box culvert.

During larger storm events, the culvert will overtop, and drainage will flow over the roadway as it does currently in the historic condition. The box culvert has a capacity of 435 cfs with 7 feet of headwater depth at the inlet. The roadway cross section at the centerline has a capacity of 337 cfs with a depth of 12". The total capacity for the culvert and the roadway is approximately 772 cfs, which exceeds the anticipated 100-year storm flows for the 1994 SCS study, Stream Stats model, and preliminary Flow2D model. CulvertMaster and FlowMaster reports for the culvert and roadway capacity can be found in the Appendix.

The inclusion of safety railing on the inlet and outlet headwalls, along with guardrails on either side of the roadway, will provide pedestrian protection and assist in keeping larger debris from collecting on the roadway during larger storm events.

CONCLUSION AND RECOMMENDATIONS

Various existing drainage reports and studies were reviewed to determine the design flow and required capacity for the proposed culvert to pass the 25-year storm event. A 3' x 12' precast concrete box culvert is proposed to pass these flows underneath the roadway and into the existing drainage channel. The anticipated 100-year stormwater flow rates will overtop the culvert as it does in the existing condition, with a depth of less than 12" over the roadway. The flowline of the channel will be reduced by more than 4 feet with the installation of the box culvert which is designed for the 25 year storm event. Overtopping of the roadway will occur during larger storm events but the backwater and floodplain limits currently shown by the City of Sedona will be reduced from the current conditions.

The design concepts in this report will ensure that the drainage integrity of the site is sustained with proper maintenance activity. Periodic inspections of the drainage infrastructure should be performed particularly after heavy monsoon season rains. Sediment should be regularly removed from the drainage infrastructure to ensure proper working operation.

REFERENCES

Floodplain Management Study, City of Sedona, May 1994

Stormwater Master Plan, City of Sedona, 2005

Sedona Stormwater Master Plan Update – Phase II, JE Fuller

<u>Yavapai County Drainage Criteria Manual</u>, Yavapai County Flood Control District, July 2015

SOFTWARE

Bentley CulvertMaster CONNECT Edition

Bentley OpenFlows Flowmaster CONNECT Edition Update 3

StreamStats Website

Shephard-Wesnitzer, Inc. Consulting Civil Engineers Job No. 21240 Back O Beyond Low Water Crossing Sedona, Arizona Drainage Report

APPENDIX

4

Disclaimer: Map and parcel information is believed to be accurate but accuracy is not guaranteed. No portion of the information should be considered to be, or used as, a legal document. The information is provided subject to the express condition that the user knowingly waives any and all claims for damages against Yavapai County that may arise from the use of this data.

TABLE C-1: SUMMARY OF PEAK DISCHARGES BY FREQUENCY TYPE II, ARC II, 24-HOUR RAINFALL

а.

1

- d

	HEC- X-SEC	-2 TION		DRAINAGE AREA	2-YEAR DISCHARGE	5-YEAR DISCHARGE	10-YEAR DISCHARGE	25-YEAR DISCHARGE	50-YEAR DISCHARGE	100-YEAR DISCHARGE	500-YEAR DISCHARGE
	(NO.)		1\	(SQ MILES)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS) 2/
PROFILE 100	101	11 120	A	4.57	69	432	1026	2330	3419	5072	10079
	125	Hwy 179	T	0.55	23	114	240	402	001	520	1455
PROFILE 200	204	Hwy 179	Ð	0.63	19	118	283	551	812	1125	1932
PROFILE 200 A	220		Α	0.07	3	18	37	66	100	141	268
PROFILE 300	301 310	Rufous La	A	0.16 0.10	8 9	44 30	102 78	200 147	280 204	380 278	621 440
PBOEILE 400	401		Ā	0.62	36	142	257	497	725	1137	1856
	412	Hwy 179	L	0.36	37	123	196	344.	498	680	1041
PROFILE 500	504		F	0.11	14	35	60	114	178	248	386
PROFILE 600	604		D	0.03	3	11	21	40	57	78	125
PROFILE 700	703	Meadow Lark Dr	С	0.06	7	26	47	88	125	157	254
PROFILE 900	901		Α	0.37	12	80	181	360	528	730	1279
	905.1	Hwy 179	G	0.24	10	62	137	266	382	521	897
PROFILE 1000	1001		Α	0.55	15	104	243	472	667	866	1578
	1018.1	Hwy 179	Al	0.31	9	70	163	319	459	624	1081
	1021.1	Pine Dr	AN	0.14	8	44	92	173	246	336	574
	1025.1	Painted Canyon Dr	AQ	0.05	4	17	35	64	91	126	208
PROFILE 1000 A	1030		Α	0.09	5	27	57	109	155	210	366
PROFILE 1000 C	1050.1		В	0.12	9	42	74	143	203	283	466
	1057	Hwy 179	J	0.12	10	44	81	157	221	303	488
PROFILE 1100	1101		Α	7.44	193	905	1941	3994	5600	7794	12842
PROFILE 1100 A	1123	Margs Draw	D	1.34	48	200	387	783	1120	1565	2577

SHEET 1 OF 7

SECTION E.5C										
Oak Creek (Basin C) HEC-1 Model Output										
+	ROUTED TO	K12R	234.	11.95	16.	5.	3.	.06		
+	HYDROGRAPH AT	K11B	87.	12.00	8.	3.	1.	.03		
+	ROUTED TO	K11R	87.	12.00	8.	з.	1.	.03		
+	HYDROGRAPH AT	K10B	61.	11.95	5.	2.	1.	.02		
+	3 COMBINED AT	K10C	372.	11.95	29.	9.	5.	.11		
+	ROUTED TO	K10R	364.	12.00	29.	9.	5.	.11		
+	HYDROGRAPH AT	K9B	230.	12.00	17.	5.	3.	.07		
+	2 COMBINED AT	K9C	594.	12.00	46.	15.	7.	.18		
+	ROUTED TO	K9R	590.	12.00	46.	15.	7.	.18		
+	HYDROGRAPH AT	K8B	203.	11.90	15.	5.	2.	.06		
+	ROUTED TO	K8R	193.	12.00	15.	5.	2.	.06		
+	HYDROGRAPH AT	K7B	203.	12.00	18.	6.	3.	.07		
+	HYDROGRAPH AT	K6B	128.	12.05	8.	2.	1.	.04		
+	4 COMBINED AT	K6C	1104.	12.00	87.	28.	13.	.35		
+	ROUTED TO	K6R	1079.	12.05	87.	28.	13.	.35		
+	HYDROGRAPH AT	K5B	260.	12.00	20.	6.	3.	.08		
+	ROUTED TO	K5R	260.	12.00	20.	6.	3.	.08		
+	HYDROGRAPH AT	K4B	94.	12.05	8.	3.	1.	.04		
+	HYDROGRAPH AT	K3B	180.	11.95	12.	4.	2.	.06		
+	4 COMBINED AT	K4C	1580.	12.05	128.	40.	19.	.52		
+	ROUTED TO	K4R	1519.	12.10	128.	40.	19.	.52		
+	HYDROGRAPH AT	K2B	187.	12.10	17.	5.	2.	.08		
+	2 COMBINED AT	K2C	1706.	12.10	145.	46.	22.	.61		
+	ROUTED TO	K2R	1640.	12.20	145.	46.	22.	.61		
+	HYDROGRAPH AT	K1B	737.	12.05	65.	20.	10.	.28		
+	3 COMBINED AT	KIC	5717.	12.45	884.	256.	123.	4.48		
+	ROUTED TO	KIR	5717.	12.45	884.	256.	123.	4.48		

*** NORMAL END OF HEC-1 ***

StreamStats Report

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): Time: AZ AZ20210929193436815000 34.82640, -111.78325 2021-09-29 12:35:00 -0700

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
CONTDA	Area that contributes flow to a point on a stream	0.51	square miles
ELEV	Mean Basin Elevation	4307.382	feet
PRECIP	Mean Annual Precipitation	17.7	inches

Peak-Flow Statistics Parameters [Peak Region 4 Central Highland 2014 5211]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
CONTDA	Contributing Drainage Area	0.51	square miles	0.059	18044
ELEV	Mean Basin Elevation	4307.382	feet	3274	7451
PRECIP	Mean Annual Precipitation	17.7	inches	10.8	33.5

Peak-Flow Statistics Flow Report [Peak Region 4 Central Highland 2014 5211]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	ASEp
50-percent AEP flood	35	ft^3/s	8.46	145	101
20-percent AEP flood	115	ft^3/s	46.6	284	57
10-percent AEP flood	201	ft^3/s	105	386	40.3
4-percent AEP flood	364	ft^3/s	225	589	29
2-percent AEP flood	526	ft^3/s	334	828	27.1
1-percent AEP flood	723	ft^3/s	459	1140	27.1
0.5-percent AEP flood	954	ft^3/s	576	1580	28.9
0.2-percent AEP flood	1340	ft^3/s	752	2390	35

Peak-Flow Statistics Citations

Paretti, N.V., Kennedy, J.R., Turney, L.A., and Veilleux, A.G., 2014, Methods for estimating magnitude and frequency of floods in Arizona, developed with unregulated and rural peak-flow data through water year 2010: U.S. Geological Survey Scientific Investigations Report 2014-5211, 61 p., http://dx.doi.org/10.3133/sir20145211. (http://pubs.usgs.gov/sir/2014/5211/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Culvert Calculator Report BACK O BEYOND ROAD

Solve For: Discharge

Culvert Summary					
Allowable HW Elevation	4,178.50	ft	Headwater Depth/Height	2.00	
Computed Headwater Elevation	4,178.50	ft	Discharge	386.65	cfs
Inlet Control HW Elev.	4,178.50	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	4,178.19	ft	Control Type	Inlet Control	
Grades					
Upstream Invert	4,172.50	ft	Downstream Invert	4,171.50	ft
Length	68.00	ft	Constructed Slope	0.014706	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	2.37	ft
Slope Type	Steep		Normal Depth	2.04	ft
Flow Regime	Supercritical		Critical Depth	3.00	ft
Velocity Downstream	13.60	ft/s	Critical Slope	0.008829	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	6.00	ft
Section Size	6 x 3 ft		Rise	3.00	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev.	4,178.19	ft	Upstream Velocity Head	1.79	ft
Ке	0.50		Entrance Loss	0.90	ft
Inlet Control Properties					
Inlet Control HW Elev.	4.178.50	ft	Flow Control	Submeraed	
Inlet Type 45° bevels; 10 - 45° sł	kewed headwall		Area Full	36.0	ft²
K	0.49800		HDS 5 Chart	11	
Μ	0.66700		HDS 5 Scale	4	
С	0.03270		Equation Form	2	
Y	0.75000				

Page 1

Culvert Calculator Report BACK O BEYOND ROAD

Solve For: Discharge

Culvert Summary					
Allowable HW Elevation	4,179.50	ft	Headwater Depth/Height	2.33	
Computed Headwater Eleva	4,179.50	ft	Discharge	434.89	cfs
Inlet Control HW Elev.	4,179.50	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	4,178.90	ft	Control Type	Inlet Control	
Grades					
Upstream Invert	4,172.50	ft	Downstream Invert	4,171.50	ft
Length	68.00	ft	Constructed Slope	0.014706	ft/ft
Hydraulic Profile					
	60		Depth Downstream	2 57	ft
	32 Steen		Normal Depth	2.07	n ft
Flow Regime	unercritical		Critical Depth	3.00	ft
Velocity Downstream	14 10	ft/s	Critical Slope	0 011170	ft/ft
Velocity Downed out	11.10	100		0.011110	1011
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	6.00	ft
Section Size	6 x 3 ft		Rise	3.00	ft
Number Sections	2				
Outlet Control Properties					
	4 470 00	<u>n</u>		0.07	<i>a</i>
Outlet Control Hw Elev.	4,178.90	π	Upstream velocity Head	2.27	π #
r.e	0.50		Entrance Loss	1.13	п
Inlet Control Properties					
Inlet Control HW Elev.	4,179.50	ft	Flow Control	Submerged	
lm 45 t° Toppve ls; 10 - 45° skewe	d headwall		Area Full	36.0	ft²
К	0.49800		HDS 5 Chart	11	
Μ	0.66700		HDS 5 Scale	4	
С	0.03270		Equation Form	2	
Y	0.75000				

Project Description Manning Friction Method Formula Solve For Discharge Input Data Channel Slope 0.010 ft/ft Normal Depth 12.0 in Section Definitions Station Elevation (ft) (ft) 0+00 4,180.60 0+08 4,180.00 0+13 4,177.70 0+21 4,176.90 0+45 4,176.90 0+55 4,177.00 0+73 4,181.00 **Roughness Segment Definitions** Start Station Ending Station **Roughness Coefficient** (0+00, 4,180.60) (0+73, 4, 181.00)0.016 Options Current Roughness Weighted Pavlovskii's Method Method Pavlovskii's **Open Channel Weighting** Method Method **Closed Channel Weighting** Pavlovskii's Method Method Results Discharge 337.52 cfs **Roughness Coefficient** 0.016 4,176.9 to **Elevation Range** 4,181.0 ft Flow Area 40.2 ft² Wetted Perimeter 46.7 ft Hydraulic Radius 10.3 in Top Width 46.48 ft

Worksheet for Back O Beyond Road CL Cross Section

Specific Energy 2.10 ft Froude Number 1.594 Bentley Systems, Inc. Haestad Methods Solution chanel capacity.fm8 Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

12.0 in

15.9 in

0.004 ft/ft

8.40 ft/s

1.10 ft

Normal Depth

Critical Depth

Critical Slope

Velocity Head

Velocity

11/3/2022

FlowMaster [10.03.00.03] Page 1 of 2

Results	
Flow Type	Supercritical
GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N/A
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	12.0 in
Critical Depth	15.9 in
Channel Slope	0.010 ft/ft
Critical Slope	0.004 ft/ft

Worksheet for Back O Beyond Road CL Cross Section

chanel capacity.fm8 11/3/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

Cross Section for Back O Beyond Road CL

chanel capacity.fm8 11/3/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

GEOTECHNICAL EVALUATION REPORT

BACK O' BEYOND BOX CULVERT

Back O' Beyond Road Sedona Arizona WT Reference No. 2521JB288

PREPARED FOR:

Shephard-Wesnitzer, Inc. 75 Kallof Place Sedona, Arizona 86336 Attn: Mr. Art H. Beckwith, P.E. February 10, 2022

Gregory L. E. Burr, R.G., E.I.T. Director of Geotechnical Services

Craig P. Wiedeman, P.E. Senior Geotechnical Engineer

ARIZONA • COLORADO • NEVADA • NEW MEXICO • UTAH

Geotechnical Environmental Inspections Materials

÷

Western2400 East Huntington DriveTechnologies Inc.Flagstaff, Arizona 86004-8934The Quality People(928) 774-8700 • fax 774-6469

February 10, 2022

Shephard-Wesnitzer, Inc. 75 Kallof Place Sedona, Arizona 86336

Attn: Mr. Art H. Beckwith, P.E.

Re: Geotechnical Evaluation Back O' Beyond Box Culvert Back O' Beyond Road Sedona Arizona

Job No. 2521JB288

Western Technologies Inc. has completed the geotechnical evaluation for the proposed box culvert to be located in Sedona, Arizona. This study was performed in general accordance with our proposal number 2521PW380R dated October 1, 2021. The results of our study, including the boring location diagram, laboratory test results, boring logs, and the geotechnical recommendations are attached.

We have appreciated being of service to you in the geotechnical engineering phase of this project and are prepared to assist you during the construction phases as well. If design conditions change, or if you have any questions concerning this report or any of our testing, inspection, design and consulting services, please do not hesitate to contact us. We look forward to working with you on future projects.

Sincerely, WESTERN TECHNOLOGIES, INC. Geotechnical Engineering Services

Myr.E.A

Gregory L. E. Burr, R.G., E.I.T. Director of Geotechnical Services

Copies to: Addressee (emailed)

TABLE OF CONTENTS

1.0	PURP	OSE1
2.0	PROJI	ECT DESCRIPTION
3.0	SCOP	E OF SERVICES2
	3.1	Field Exploration 2
	3.2	Laboratory Analyses 2
	3.3	Analyses and Report 3
4.0	SITE C	CONDITIONS
	4.1	Surface
	4.2	Subsurface
5.0	GEOT	ECHNICAL PROPERTIES AND ANALYSIS
	5.1	Laboratory Tests 4
	5.2	Field Tests 4
6.0	RECO	MMENDATIONS
	6.1	General4
	6.2	Design Considerations
	6.3	Wingwall Foundations
	6.4	Lateral Design Criteria
	6.5	Seismic Considerations7
	6.6	Corrosivity
7.0	EART	HWORK8
	7.1	General8
	7.2	Site Clearing
	7.3	Excavation9
	7.4	Wingwall Foundation Preparation9
	7.5	Slab-on-Grade Preparation
	7.6	Materials 10
	7.7	Placement and Compaction11
	7.8	Compliance 11
8.0	ADDI	TIONAL SERVICES
9.0	LIMIT	ATIONS
10.0	CLOS	URE13

TABLE OF CONTENTS (Continued)

BORING LOCATION DIAGRAM	Plate 1
APPENDIX A	
Definition of Terminology	A-1
Method of Classification	A-2
Boring Log Notes	A-3
Boring Logs	A-4 to A-6
APPENDIX B	
Laboratory Tests	B-1 to B-4
APPENDIX C	
ReMi/Seismic Data	C-1

GEOTECHNICAL EVALUATION BACK O' BEYOND BOX CULVERT BACK O' BEYOND ROAD SEDONA, ARIZONA JOB NO. 2521JB288

1.0 PURPOSE

This report contains the results of our geotechnical evaluation for the proposed box culvert to be located on Back O' Beyond Road in Sedona, Arizona. The purpose of these services is to provide information and recommendations regarding:

- wing-wall foundation design parameters
- slab-on-grade support
- lateral earth pressures
- seismic considerations
- earthwork
- corrosivity to concrete

Results of the field exploration, field tests, and laboratory testing program are presented in the Appendices.

2.0 PROJECT DESCRIPTION

Based on information provided by Mr. Arthur H. Beckwith, P.E., the proposed project will consist of a new box culvert approximately 60 feet long, 8 feet wide and 4 feet tall to replace an existing low water crossing. The structure will use cast-in-place concrete construction. Maximum wingwall loads for the structure are assumed to be 2.0 kips per linear foot. We anticipate that the finished bottom of box culvert will be a maximum of 9 feet below the existing low water crossing grade. Should any of our information or assumptions not be correct, we request that the Client notify Western Technologies (WT) immediately.

3.0 SCOPE OF SERVICES

3.1 Field Exploration

Three borings were auger drilled to depths of about 2 to 6 feet below existing site grades at the approximate locations shown on the attached boring location diagram. Logs of the borings are presented in Appendix A. Subsoils encountered during drilling were examined visually and sampled at selected depth intervals. A field log was prepared for each boring. These logs contain visual classifications of the materials encountered during drilling as well as interpolation of the subsurface conditions between samples. Final logs, included in Appendix A, represent our interpretation of the field logs and include modifications based on laboratory observations and tests of the field samples. The final logs describe the materials encountered, their thicknesses, and the locations where samples were obtained. The Unified Soil Classification System was used to classify soils. The soil classification symbols appear on the boring logs and are briefly described in Appendix A. Local and regional geologic characteristics were used to estimate the seismic design criteria and liquefaction potential.

3.2 <u>Laboratory Analyses</u>

Laboratory analyses were performed on representative soil samples to aid in material classification and to estimate pertinent engineering properties of the on-site soils for preparation of this report. Testing was performed in general accordance with applicable standard test methods. The following tests were performed and the results are presented in Appendix B.

- Gradation
- Expansion
- Maximum density/optimum moisture
- Plasticity
- Corrosivity

Test results were utilized in the development of the recommendations contained in this report.

3.3 Analyses and Report

This geotechnical engineering report includes a description of the project, a discussion of the field and laboratory testing programs, a discussion of the subsurface conditions, and design recommendations as appropriate to the purpose. The scope of services for this project does not include, either specifically or by implication, any environmental assessment of the site, discovery of underground storage tanks or other underground structures, or identification of contaminated or hazardous materials or conditions. If there is concern about the potential for such contamination, other studies should be undertaken. We are available to discuss the scope of such studies with you.

4.0 SITE CONDITIONS

4.1 Surface

At the time of our field exploration, the site was an existing low water crossing that directs water southwest across Back O' Beyond Road. The low water crossing was bordered on the north by a northeast-southwest oriented wash about 20 feet wide and 5 to 10 feet deep, on the south and west by developed residential lots, and on east by an undeveloped residential lot. The ground surface surrounding the previously developed area contained embedded gravel, cobbles, boulders, and sandstone outcrops, and exhibited a gentle to moderate slope down to the south-southwest. Site surface drainage appeared to be good by means of sheet flow in the wash to the southwest. No water was present in the wash at the time of our field exploration. Vegetation on the site surrounding the developed areas consisted of a sparse to moderate growth of native juniper trees, bushes, weeds and grasses.

4.2 <u>Subsurface</u>

As presented on the boring logs, 2 to 2.5 inches of asphalt over 2.5 to 4 inches of aggregate base course were encountered at the surface in the borings. Subsoils extending to the full depth of exploration in all borings were found to be non-plastic Silty SANDS and low plasticity Silty, Clayey SANDS, both with variable amounts of gravel, cobbles and boulders. Refusal to auger penetration occurred in all borings at depths of about 2 to 6 feet on SANDSTONE. Groundwater was not encountered in any boring at

the time of exploration. The logs in Appendix A show details of the subsurface conditions encountered during the field exploration.

The boring logs included in this report are indicators of subsurface conditions only at the specific location and date noted. Variations from the field conditions represented by the borings may become evident during construction. If variations appear, we should be contacted to re-evaluate our recommendations.

5.0 GEOTECHNICAL PROPERTIES AND ANALYSIS

5.1 <u>Laboratory Tests</u>

Near-surface soils contain non-plastic to low plasticity fines. These soils exhibit low expansion potential when recompacted, confined by loads approximating floor loads and saturated in accordance with standard Arizona test methods. Densification of the soil by the passage of construction equipment will increase the expansion potential of the soil.

5.2 <u>Field Tests</u>

On-site subsoils located near and below shallow foundation level exhibited high resistance to penetration using the standard penetration test method (ASTM D1586). One refraction micro-tremor (ReMi) seismic test was performed to estimate the shear wave velocity profile at the site. The approximate location of the seismic test is shown on Plate 1.

6.0 **RECOMMENDATIONS**

6.1 <u>General</u>

Recommendations contained in this report are based on our understanding of the project criteria described in Section 2.0 and the assumption that the soil and subsurface conditions are those disclosed by the explorations. Others may change the plans, final elevations, number and type of structures, foundation loads, and structure levels during design or construction. Substantially different subsurface conditions from those described

herein may be encountered or become known. Any changes in the project criteria or subsurface conditions shall be brought to our attention in writing.

6.2 Design Considerations

Cobbles and some boulders may likely be encountered during construction. These oversized materials, greater than 3 inches, could present construction difficulties for foundation, utility trenches and other excavations. In cut areas and excavations, exposed oversized materials should be removed.

6.3 Wingwall Foundations

If the recommendations contained in this report are followed, the proposed structure wingwalls can be supported by conventional shallow spread footings bearing on dense sandstone and/or lean mix (2-sack) concrete backfill extending to dense sandstone. Footings should bear at least 2 feet below the lowest adjacent finished grade. Footings may be designed to impose a maximum dead plus live load pressure of up to 3500 pounds per square foot.

Total and differential settlement of foundation elements bearing on dense sandstone or on lean mix concrete backfill extending to dense sandstone should be nominal. Finished grade is the lowest grade adjacent to the footings. The design bearing capacity applies to dead loads plus design live load conditions.

The recommended minimum width of wall footings is 16 inches. The bearing value given is a net bearing value and the weight of the concrete in the footings may be ignored. All footings, stem walls, and masonry walls should be reinforced to reduce the potential for distress caused by differential foundation movements. The use of joints at openings or other discontinuities in masonry walls is recommended.

We recommend that the geotechnical engineer or his representative observe the footing excavations before reinforcing steel and concrete are placed. It should be determined whether the rock materials exposed are similar to those anticipated for support of the footings. Any soft, loose or unacceptable materials should be undercut to suitable materials and backfilled with either lean mix or structural concrete.

6.4 Lateral Design Criteria

For retaining walls located above any free water surface with no surcharge loads, recommended equivalent fluid pressures and coefficients of base friction for unrestrained elements are:

- Coefficient of base friction
 Soil......0.35*
 Rock.....0.55
 - * The coefficient of base friction should be reduced to 0.25 when used in conjunction with passive pressure.

Where the design includes restrained elements, the following equivalent fluid pressures are recommended:

The equivalent fluid pressures presented herein do not include the lateral pressures arising from the presence of:

- hydrostatic conditions, long-term submergence or partial submergence
- sloping backfill, positively or negatively
- surcharge loading, permanent or temporary
- seismic or dynamic conditions

We recommend a free-draining soil layer or manufactured geocomposite material, be constructed adjacent to the back of the retaining wall. A filter may be required between the soil backfill and drainage layer. This drainage zone should help prevent hydrostatic pressure buildup. This vertical drain should be tied into a gravity drainage system at the base of the retaining wall. It is important that all backfill be properly placed and compacted. Backfill should be mechanically compacted in layers. Flooding or jetting should not be permitted. Care should be taken not to damage the walls when placing the backfill. Backfills should be inspected and tested during placement.

Fill against footings, stem walls and retaining walls should be compacted to densities specified in **EARTHWORK**. Medium to high plasticity clay soils should not be used as backfill against retaining walls. Compaction of each lift adjacent to walls should be accomplished with hand-operated tampers or other lightweight compactors. Overcompaction may cause excessive lateral earth pressures which could result in wall movements.

6.5 <u>Seismic Considerations</u>

One refraction micro-tremor (ReMi) seismic test was performed to estimate the shear wave velocity profile at the site. The array consisted of twelve 10-Hertz geophones spaced at 8 meters (26.2 feet). Background vibrations were generated along the length of the line repeatedly, and measured and recorded by a Seismic Source DAQ-Link II seismograph. The data was analyzed using the SeisOpt ReMi v4.0 software package and a seismic shear wave velocity profile was generated for the array.

Based upon the interpreted shear wave velocity profile (see Plate C-1), the average velocity, using the IBC calculation method, between the approximate depths of 0 and 100 feet was estimated to be 2702 feet per second. Based upon the calculated average shear wave velocity and the 2018 IBC, the site may be assigned a B soil classification.

Structures should be designed in accordance with applicable building codes. The seismic design parameters presented in the following table, in accordance with the 2018 International Building Code and ASCE 7-16, are applicable to the project site:

Seismic Design Parameters					
	.				
Soll Site Class	В				
Mapped Spectral Response Acceleration at 0.2 sec period (S_s)	0.293g				
Mapped Spectral Response Acceleration at 1.0 sec period (S ₁)	0.092g				
Site Coefficient for 0.2 sec period (F _a)	0.9				
Site Coefficient for 1.0 sec period (F _v)	0.8				
Design Spectral Response Acceleration at 0.2 sec period (S _{DS})	0.176g				
Design Spectral Response Acceleration at 1.0 sec period (S _{D1})	0.049g				

The soil site class is based upon conditions identified in shallow exploratory borings and local knowledge of the geotechnical conditions in the vicinity of the site. Conditions extending beyond the depth of our borings to a depth of 100 feet were assumed for the purposes of providing the information presented in the table. Based upon the density of the on-site soils and lack of groundwater, the potential settlement and lateral spread due to liquefaction is not a considered to be a significant concern on this site.

6.6 <u>Corrosivity</u>

The chemical test results indicate that the soils at the site classify as Class S0 in accordance with Table 19.3.1.1 of ACI 318-19. However, in order to be consistent with standard local practice and for reasons of material availability, we recommend that Type II Portland cement be used for all concrete on and below grade.

Test results indicate the on-site soils exhibit low corrosive potential to underground piping. The information derived from this testing should be used as an aid in choosing the construction materials that will be in contact with these soils and that will need to be resistant to various corrosive forces. Manufacturer's representatives should be contacted regarding the specific corrosivity resistance for their particular product.

7.0 EARTHWORK

7.1 <u>General</u>

The conclusions contained in this report for the proposed construction are contingent upon compliance with recommendations presented in this section. Any excavating,

trenching, or disturbance that occurs after completion of the earthwork must be backfilled, compacted and tested in accordance with the recommendations contained herein. It is not reasonable to rely upon our conclusions and recommendations if any future unobserved and untested trenching, earthwork activities or backfilling occurs.

7.2 <u>Site Clearing</u>

Strip and remove all vegetation, organics, fill, asphalt and any other deleterious materials from the structure area. The structure area is defined as that area within the footprint plus 5 feet beyond the perimeter of that footprint. All exposed surfaces should be free of mounds and depressions that could prevent uniform compaction.

7.3 <u>Excavation</u>

We anticipate that excavations into the shallow site soils for the proposed construction can be accomplished with conventional equipment. Excavations penetrating the underlying sandstone will require the use of heavy-duty, specialized equipment to facilitate rock break-up and removal.

On-site soils may pump or become unworkable at high water contents. Workability may be improved by scarifying and drying. Overexcavation of wet zones and replacement with drier granular materials may be necessary. The use of lightweight excavation and compaction equipment may be required to minimize subgrade pumping.

7.4 <u>Wingwall Foundation Preparation</u>

Specialized treatment of dense sandstone within foundation areas is not required. Remove all loose or disturbed materials from the bottoms and sides of the excavations prior to the placement of foundation concrete. If desired, lean mix (2-sack) concrete backfill may be used between the design bottom of footing elevation and the top of the dense rock.

7.5 <u>Slab-on-Grade Preparation</u>

Scarify, moisten or dry as required, and compact all subgrade soils to a minimum depth of 12 inches. The subgrade preparation should be accomplished in a manner which will

result in uniform water contents and densities after compaction. Scarification and recompaction is not required in areas where dense sandstone is encountered.

7.6 <u>Materials</u>

- a. Clean on-site soils with a maximum dimension of 6 inches or imported materials may be used as fill material for the following:
 - Slab areas
 - Backfill
- b. Frozen soils should not be used as fill or backfill.
- c. Lean mix (2-sack) concrete backfill should consist of aggregate base course type material combined with 2 sacks of cement per cubic yard. A coarse rock mix should not be used.
- d. Imported soils should conform to the following:
 - Gradation (ASTM C136): percent finer by weight

	6"	
	4"	
	3/4"	
	No. 4 Sieve	50-100
	No. 200 Sieve	40 (max)
•	Maximum expansive potential (%) ¹	1.5
•	Maximum soluble sulfates (%)	0.10

e. Base course should conform to current City of Sedona specifications.

¹ Measured on a sample compacted to approximately 95 percent of the ASTM D698 maximum dry density at about 3 percent below optimum water content. The sample is confined under a 100 psf surcharge and submerged.

7.7 <u>Placement and Compaction</u>

- a. Place and compact fill in horizontal lifts, using equipment and procedures that will produce recommended water contents and densities throughout the lift.
- b. Uncompacted lift thickness should not exceed 8 inches.
- c. No fill should be placed over frozen ground.
- d. Materials should be compacted to the following:

Minimum Percent Material Compaction (ASTM D698)

•	On-site or imported soil, reworked and fill:	
	Below slabs-on-grade	90

•	Backfill:	
	Structural	95
	Nonstructural	90

e. On-site and imported soils with low expansive potential and aggregate base course materials should be compacted with a moisture content in the range of 3 percent below to 3 percent above optimum.

7.8 <u>Compliance</u>

Recommendations for foundations and slabs-on-grade supported on compacted fills or prepared subgrade depend upon compliance with the **EARTHWORK** recommendations. To assess compliance, observation and testing should be performed under the direction of a WT geotechnical engineer. Please contact us to provide these observation and testing services.

8.0 ADDITIONAL SERVICES

The recommendations provided in this report are based on the assumption that a sufficient schedule of tests and observations will be performed during construction to verify compliance. At a minimum, these tests and observations should be comprised of the following:

- Observations and testing during site preparation and earthwork,
- Observation of foundation excavations, and
- Consultation as may be required during construction.

Retaining the geotechnical engineer who developed your report to provide construction observation is the best way to verify compliance and to help you manage the risks associated with unanticipated conditions.

9.0 LIMITATIONS

This report has been prepared assuming the project criteria described in **2.0 PROJECT DESCRIPTION**. If changes in the project criteria occur, or if different subsurface conditions are encountered or become known, the conclusions and recommendations presented herein shall become invalid. In any such event, WT should be contacted in order to assess the effect that such variations may have on our conclusions and recommendations. If WT is not retained for the construction observation and testing services to determine compliance with this report, our professional responsibility is accordingly limited.

The recommendations presented are based entirely upon data derived from a limited number of samples obtained from widely spaced explorations. The attached logs are indicators of subsurface conditions only at the specific locations and times noted. This report assumes the uniformity of the geology and soil structure between explorations, however variations can and often do exist. Whenever any deviation, difference, or change is encountered or becomes known, WT should be contacted.

This report is for the exclusive benefit of our client alone. There are no intended third-party beneficiaries of our contract with the client or this report, and nothing contained in the contract or this report shall create any express or implied contractual or any other relationship with, or claim or cause of action for, any third party against WT.

This report is valid for the earlier of one year from the date of issuance, a change in circumstances, or discovered variations. After expiration, no person or entity shall rely on this report without the express written authorization of WT.

10.0 CLOSURE

We prepared this report as an aid to the designers of the proposed project. The comments, statements, recommendations and conclusions set forth in this report reflect the opinions of the authors. These opinions are based upon data obtained at the location of the explorations, and from laboratory tests. Work on your project was performed in accordance with generally accepted standards and practices utilized by professionals providing similar services in this locality. No other warranty, express or implied, is made.

\mathbf{N}	Not to Scale		
	Approximate Test Boring Location		
	Approximate Seismic Line Location	Geotechnical Environmental Technologies Inc.	
		Inspections The Quality People Materials Since 1955	Job No.: 2

Boring Location Diagram

Western Technologies Inc.

2521JB288

Plate: 1

Allowable Soil Bearing Capacity	The recommended maximum contact stress developed at the interface of the foundation element and the supporting material.		
Backfill	A specified materia	l placed and compacted in a confined area.	
Base Course	A layer of specified	aggregate material placed on a subgrade or subbase.	
Base Course Grade	Top of base course		
Bench	A horizontal surface	e in a sloped deposit.	
Caisson/Drilled Shaft	A concrete foundat enlarged base (or	ion element cast in a circular excavation which may have a belled caisson).	n
Concrete Slabs-On-Grade	A concrete surface	layer cast directly upon base course, subbase or subgrade.	
Crushed Rock Base Course	A base course com	posed of crushed rock of a specified gradation.	
Differential Settlement	Unequal settlemen	t between or within foundation elements of a structure.	
Engineered Fill	Specified soil or aga moisture condition	gregate material placed and compacted to specified density ns under observations of a representative of a soil enginee	[,] and/or r.
Existing Fill	Materials deposite	d through the action of man prior to exploration of the site.	
Existing Grade	The ground surface at the time of field exploration.		
Expansive Potential	The potential of a soil to expand (increase in volume) due to absorption of moisture.		
Fill Materials deposited by the actions of man.			
Finished Grade	The final grade created as a part of the project.		
Gravel Base Course	A base course com	posed of naturally occurring gravel with a specified gradatic	on.
Heave	Upward movement		
Native Grade	The naturally occur	ring ground surface.	
Native Soil	Naturally occurring	on-site soil.	
Rock	A natural aggregate forces. Usually re force for excavati	e of mineral grains connected by strong and permanent coh quires drilling, wedging, blasting or other methods of extra on.	esive ordinary
Sand and Gravel Base Course	A base course of sa	nd and gravel of a specified gradation.	
Sand Base Course	A base course com	posed primarily of sand of a specified gradation.	
Scarify	To mechanically loosen soil or break down existing soil structure.		
Settlement	Downward movement.		
Soil	Any unconsolidated material composed of discrete solid particles, derived from the physical and/or chemical disintegration of vegetable or mineral matter, which can be separated by gentle mechanical means such as agitation in water.		
Strip	To remove from present location.		
Subbase	A layer of specified material placed to form a layer between the subgrade and base course.		
Subbase Grade	Top of subbase.		
Subgrade	Prepared native soil surface.		
Centechnical - Woston	'n		PLATE
Environmental Inspections Materials	ologies Inc. ity People	DEFINITION OF TERMINOLOGY	A-1

Geotechnical Environmental Inspections Materials wt-us.com PLATE

COARSE-GRAINED SOILS

LESS THAN 50% FINES

GROUP SYMBOLS	DESCRIPTION	MAJOR DIVISIONS
GW	WELL-GRADED GRAVEL OR WELL-GRADED GRAVEL WITH SAND, LESS THAN 5% FINES	GRAVELS
GP	POORLY-GRADED GRAVEL OR POORLY-GRADED GRAVEL WITH SAND, LESS THAN 5% FINES	MORE THAN HALF OF COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE
GM	SILTY GRAVEL OR SILTY GRAVEL WITH SAND, MORE THAN 12% FINES	
GC	CLAYEY GRAVEL OR CLAYEY GRAVEL WITH SAND, MORE THAN 12% FINES	
sw	WELL-GRADED SAND OR WELL-GRADED SAND WITH GRAVEL, LESS THAN 5% FINES	SANDS
SP	POORLY-GRADED SAND OR POORLY-GRADED SAND WITH GRAVEL, LESS THAN 5% FINES	MORE THAN HALF OF COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE SIZE
SM	SILTY SAND OR SILTY SAND WITH GRAVEL, MORE THAN 12% FINES	
sc	CLAYEY SAND OR CLAYEY SAND WITH GRAVEL, MORE THAN 12% FINES	

NOTE: Coarse-grained soils receive dual symbols if they contain 5% to 12% fines (e.g., SW-SM, GP-GC).

0012 01220

COMPONENT	SIZE RANGE
BOULDERS	Above 12 in.
COBBLES	3 in. – 12 in.
GRAVEL Coarse Fine	No. 4 – 3 in. ¾ in. – 3 in. No. 4 – ¾ in.
SAND Coarse Medium Fine	No. 200 – No. 4 No. 10 – No. 4 No. 40 – No. 10 No. 200 – No. 40
Fines (Silt or Clay)	Below No. 200

NOTE: Only sizes smaller than three inches are used to classify soils

PLASTICITY OF FINE GRAINED SOILS

PLASTICITY INDEX	TERM
0 1 – 7	NON-PLASTIC
8 – 20	MEDIUM
Over 20	HIGH

Geotechnical Environmental Inspections Materials

Western Technologies Inc. The Quality People Since 1955 wt-us.com

FINE-GRAINED SOILS

MORE THAN 50% FINES	
---------------------	--

GROUP SYMBOLS	DESCRIPTION	MAJOR DIVISIONS	
ML	SILT, SILT WITH SAND OR GRAVEL, SANDY SILT, OR GRAVELLY SILT	SILTS	
CL	LEAN CLAY OF LOW TO MEDIUM PLASTICITY, SANDY CLAY, OR GRAVELLY CLAY	CLAYS	
OL	ORGANIC SILT OR ORGANIC CLAY OF LOW TO MEDIUM PLASTICITY	LESS THAN 50	
мн	ELASTIC SILT, SANDY ELASTIC SILT, OR GRAVELLY ELASTIC SILT	SILTS	
СН	FAT CLAY OF HIGH PLASTICITY, SANDY FAT CLAY, OR GRAVELLY FAT CLAY	AND CLAYS	
он	ORGANIC SILT OR ORGANIC CLAY OF HIGH PLASTICITY	MORE THAN 50	
РТ	PEAT AND OTHER HIGHLY ORGANIC SOILS	HIGHLY ORGANIC SOILS	

NOTE: Fine-grained soils may receive dual classification based upon plasticity characteristics (e.g. CL-ML).

CONSISTENCY

CLAYS & SILTS	BLOWS PER FOOT
VERY SOFT SOFT FIRM STIFF VERY STIFF	0 - 2 3 - 4 5 - 8 9 - 15 16 - 30
HARD	OVER 30

RELATIVE DENSITY

SANDS & GRAVELS	BLOWS PER FOOT
VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE	0 - 4 5 - 10 11 - 30 31 - 50 OVER 50

NOTE: Number of blows using 140-pound hammer falling 30 inches to drive a 2-inch-OD (1^{*}/₂-inch ID) split-barrel sampler (ASTM D1586).

DEFINITION OF WATER CONTENT

DRY	
SLIGHTLY D	AMP
DAMP	
MOIST	
WET	
SATURAT	ED

METHOD OF CLASSIFICATION

PLATE

The number shown in **"BORING NO."** refers to the approximate location of the same number indicated on the "Boring Location Diagram" as positioned in the field by pacing or measurement from property lines and/or existing features.

"DRILLING TYPE" refers to the exploratory equipment used in the boring wherein HSA = hollow stem auger, and the dimension presented is the outside diameter of the HSA used.

"N" in "BLOW COUNTS" refers to a 2-inch outside diameter split-barrel sampler driven into the ground with a 140 pound drophammer dropped 30 inches repeatedly until a penetration of 18 inches is achieved or until refusal. The number of blows, or "blow count", of the hammer is recorded for each of three 6-inch increments totaling 18 inches. The number of blows required for advancing the sampler for the last 12 inches (2nd and 3rd increments) is defined as the Standard Penetration Test (SPT) "N"-Value. Refusal to penetration is considered more than 50 blows per 6 inches. (Ref. ASTM D1586). A double vertical line within the symbol indicates no sample recovery.

"SAMPLE TYPE" refers to the form of sample recovery, in which **N** = Split-barrel sample, **G** = Grab sample.

"USCS" refers to the "Unified Soil Classification System" Group Symbol for the soil type as defined by ASTM D2487 and D2488. The soils were classified visually in the field, and where appropriate, classifications were modified by visual examination of samples in the laboratory and/or by appropriate tests.

These notes and boring logs are intended for use in conjunction with the purposes of our services defined in the text. Boring log data should not be construed as part of the construction plans nor as defining construction conditions.

Boring logs depict our interpretations of subsurface conditions at the locations and on the date(s) noted. Variations in subsurface conditions and characteristics may occur between borings. Groundwater levels may fluctuate due to seasonal variations and other factors.

The stratification lines shown on the boring logs represent our interpretation of the approximate boundary between soil or rock types based upon visual field classification at the boring location. The transition between materials is approximate and may be more or less gradual than indicated.

BORING LOG NOTES

A-3

	DATE LOCA ELEV	DRILL TION: ATION:	ED: See L Not	12- .oca Det	23-22 ation D	l iagram ed	ı		BO	RING NO	D. 1		equipment type: Drilling type: 7' Field engineer: (CME-7 'HSA C. Senic	75 or
	MOISTURE CONTENT (% OF DRY WT)	DRY DENSITY (LBS/CU FT)	SAMPLE TYPE	SAMPLE	BLOWS/FT.	DEPTH (FEET)	nscs	GRAPHIC				SOIL	DESCRIPTION		
ATION AND AT THE TIME OF LOGGING. CONDITIONS MAY DIFFER AT OTHER ATION WITH TIME. DATA PRESENTED IS A SIMPLIFICATION.		DF (L	G N		50/2"	5-	SC-SM		ASP AGC Silty de	PHALT (2 GREGATE / Clayey S nse, sligh	.5 Inch BASE AND; tly dan	es thick COURSI with gra p efusal a) E (2.5 Inches thick) Ivel, cobbles and bo t 2 Feet on SANDS	TONE	red, very
THIS SUMMARY APPLIES ONLY AT THIS LOCA LOCATIONS AND MAY CHANGE AT THIS LOC	N- R- CA- G- B-	STAN RING CALIF GRAB BUCK	DARI SAM ORNI SAN ET S	D P PLI IA 1PL AN	PENET E MODI E IPLE	10- RATI FIED	ON ⁻	TEST	3	NOTES:	Grou T: BAC	ndwater :K O'BE`	Not Encountered	RT	PLATE
			WES	STE 24 Flaç	RN TE 00 Hur gstaff, /	CHNO ntingto AZ 86	LOGI on Dri 004-8	ES IN ve 934	C.	PROJEC	т NO.: В(2521J	^{B288} G LOG		A-4

	DATE LOCA ELEVA	DRILL TION: ATION:	ED: ´ See L Not	12- .oca Det	23-21 ation Di termine	l iagram ed	1		BOI	RING N	NO.	2		equipmen Drilling Field eng	NT TYPE: TYPE: 7 " SINEER: C	CME-7 HSA . Senic	75 or
	MOISTURE CONTENT (% OF DRY WT)	DRY DENSITY (LBS/CU FT)	SAMPLE TYPE	SAMPLE	BLOWS/FT.	DEPTH (FEET)	nscs	GRAPHIC					SOIL	DESCRIPTION	1		
APPLIES ONLY AT THIS LOCATION AND AT THE TIME OF LOGGING. CONDITIONS MAY DIFFER AT OTHER • MAY CHANGE AT THIS LOCATION WITH TIME. DATA PRESENTED IS A SIMPLIFICATION.			G		82/10"	5	SM		ASP AGC Silty der	HALT (GREGAT SAND; nse, slig	Augo	er Ref	hick) <u>DURSE</u> vel, co	t 3 Feet or	thick) boulders,	red, v	ery
THIS SUMMARY	N- R- CA- G- B-	STAN RING CALIF GRAB BUCK	DARI SAM ORNI SAM ET SJ	D F PLI IA 1PL	PENET E MODI .E IPLE	RATI FIED	ON 1 SAN	TEST	3	NOTES	6: G	round	water	Not Encou	Intered		
. 1			WES	STE 24 Flac	RN TE	CHNO ntingto AZ 86	LOGI on Dri 004-8	ES IN ve 934	C.	PROJE PROJE	CT: I CT N	BACK 0.: 2	0'BE\ 521JI	YOND BOX B288	CULVER	Т	PLATE A-5
				;								BOI	RING	G LOG			

THIS SUMMARY APPLIES ONLY AT THIS LOCATION AND AT THE TIME OF LOGGING. CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH TIME. DATA PRESENTED IS A SIMPLIFICATION.

Boring	Depth	USCS			Particle (%) Pa	e Size Dis assing by	tribution Weight)		Atte Lin	rberg nits	Laborat Cha	ction		
No.	(ft)	Class.	3″	3⁄4"	#4	#10	#40	#200	2μ	LL	PI	Dry Density (pcf)	Optimum Moisture (%)	Method	Remarks
1	1-2	SC-SM	100	95	64	54	40	28.2		20	4				2
3	3-6	SM	100	99	85	79	71	34.2			NP				2
NOTE:	NP = Non-	plastic os (2µ = 0.0)02mm)	I		11		I	1		I		I		
<u>REMARK</u>	<u>s</u>		, o ,												
Classifica 1. Visual	tion / Partic	cle Size / N	loisture-l	Density I	Relation	ship									
2. Laborat 3. Minus # 4. Test Me 5. Test Me 6. From th	ory Tested 200 Only thod ASTM E thod ASTM E e ADOT Fami	0698/AASH 01557/AASH ily of Curves	FO T99 HTO T180												
G	eotechnica		Wes	tern			PRC	DJECT:	BACK O	'BEYONI		JLVERT			PLATE
Envi I	ronmental nspections		Tec The Q	hnol uality	ogie People	s Inc.	JOB	NO.:	2521JB2	288	0				B-1
	Material	s wt-us.co	Since 19 m	55					S	OIL P	ROPE	RTIES			

					Laborato	ry Compaction Ch	aracteristics	racteristics Expansion Properties			ticity	So		
Boring No.	Depth (ft.)	USCS Class.	Initial Dry Density (pcf)	Initial Water Content (%)	Dry Density(pcf)	Optimum Moisture(%)	Method	Surcharge (ksf)	Expansion (%)	LL	PI	Salts (ppm)	Sulfate (ppm)	Remarks
1	1-2	SC-SM	123.4	6.2	130.1	9.2	A	0.1	0.6					1,2,3

Notes: Initial Dry Density and Initial Water Conte	int are remolded.			
<u>Remarks</u> 1. Compacted density (approx. 95% of ASTM D698 max	. density at moisture content slightly b	elow optimum.)		
 Submerged to approximate saturation. Test Method ASTM D698/AASHTO T99 Test Method ASTM D1557/AASHTO T180 	Geotechnical Environmental Inspections	nologies Inc.	CT: BACK O'BEYOND BOX CULVERT D.: 2521JB288	
5. From the ADOT Family of Curves	Materials Since 1955 wt-us.com	i	SOIL PROPERTIES	

PLATE

B-2

CORROSIVITY TEST RESULTS

The procedures for soil survey tests and observations can be found in Appendix X1.1 of ASTM A674-10 and includes five soil properties: earth resistivity • pH • redox potential • sulfides • moisture.

Boring 1(1-2):

<u>Analysis</u>	<u>Results</u>		<u>Points</u>
Resistivity (ohm-cm)	4474		0
рН	9.0		3
Redox Potential (mV)	+313		0
Sulfides	trace		2
Moisture	fair		1
		Total Points	6

Boring 3(3-6):

<u>Analysis</u>	<u>Results</u>		<u>Points</u>
Resistivity (ohm-cm)	6565		0
рН	9.2		3
Redox Potential (mV)	+298		0
Sulfides	trace		2
Moisture	fair		1
		Total Points	6

The test procedure states that if the sum of the points is greater than 10, the soil is considered corrosive to ductile iron pipe and special protection against exterior corrosion is necessary. This conclusion is limited to soil corrosion and does not include consideration of stray direct current.

Geotechnical Environmental Inspections Western Technologies Inc. The Quality People	PROJECT: BACK O'BEYOND BOX CULVERT JOB NO. 2521JB288	рlате B-3
Materials Since 1955 wt-us.com	SOIL PROPERTIES	

Laboratory Analysis Report

Western Technologies - Flagstaff
Gregory L. E. Burr
2400 East Huntington
Flagstaff, AZ 86004-8934

Project: 2521JB288 Date Received: 1/12/2022 Date Reported: 1/14/2022 PO Number: 2522P002

Lab Number: 940165-1	1 (1-2')				
Test Parameter	Method	Result	Units	Levels	
Soluble Salts	ARIZ 237b	231	ppm		
Sulfate	ARIZ 733b	7	ppm		
Chloride	ARIZ 736b	7	ppm		
Redox Potential	ASTM G200-09	313	(Eo) mV		
Lab Number: 940165-2	3 (3-6')				
Test Parameter	Method	Result	Units	Levels	
Soluble Salts	ARIZ 237b	240	ppm		
Sulfate	ARIZ 733b	8	ppm		
			11		
Chloride	ARIZ 736b	11	ppm		

AGENDA

- 1. Introduction (Be sure to sign in)
- 2. Description of project and discussion of the project schedule
 - A. Contract Time 123 days after Notice to Proceed
 - I. Final Questions Due- Tuesday, March 21
 - II. Bids due- Tuesday, March 28
 - III. Council Approval- Tuesday, April 11
 - IV. Notice to Proceed- Anticipated Monday, April 24
- 3. Discussion of General Issues-
 - A. (From the Contract Documents) Bidders are required prior to submitting a bid to inspect the site of the work and satisfy themselves by personal examination or by such other means they may prefer, as to the location of proposed work and the actual field conditions.
 - B. Submit all questions in writing to Johnathan Hoffman, <u>ihoffman@sedonaaz.gov</u> (928) 203-5124
 - C. The contractor will be expected to coordinate and work closely and harmoniously with residents and visitors in the area.
 - D. Past Performance Questionnaires page 50 (3 are due prior to bid opening)
 - E. Application Certificate for Payment- Pages 45 and 46
- 4. Special Conditions- Starts on page 40
 - A. Section 3- Start of Construction List of Items
 - I. Traffic Control
 - II. Storm Water Pollution Control Plan
 - III. Minimum of 2 working days written notice delivered to property owners, residents, and HOA.
 85 Scenic Drive Easement approved by owners and HOA
 - (AJ Cook board member for Back O' Beyond Ranch HOA, noofficeaj@gmail.com)
- 5. General Conditions Section 9- Schedule of Construction
 - I. Contractor regular work hours- Monday thru Thursday 7:00am to 5:30pm. Friday work is allowed that does not require COS inspections.
 - II. Weekly Progress Meetings with Superintendent of Contractor to discuss progress, schedule, billing, RFI, change orders, etc.
 - III. Pre-Construction Video
 - IV. Record Drawings (GC Section 15, 26, 31)
 - A. Redline drawings submitted with each pay application (GC Section 26)
 - B. Submit as-built drawings upon completion (GC Section 15)
- 6. No addenda at this time
- 7. Bid opening on Tuesday, March 28 at 2:00pm.
- 8. Misc.
 - I. Coordinate with AZ Water for water supply
 - II. City of Sedona Temporary Use Permit will be required for staging area/laydown yard.

SIGN IN SHEET

.

SD-03 Back O' Beyond Low Water Crossing Improvements Project Mandatory Dra-Bid Maating 2/14/2023

NAME			E-MAIL
James Crowley Re	City of Sedona	928-203-5092	jcrowley@sedonaaz.gov
Sandy Phillips	City of Sedona	928-203-5076	<u>sphillips@sedonaaz.gov</u>
John Hoffman	City of Sedona	928-203-5124	jhoffman@sedonaaz.gov
TRAE TAYLOR	BANFCRI CONSTRUCTS	4 480-320 4373	TPACE Q BANFCHZ. COM
Mallena Rethe	Betapiz	928-707-3748	invettue @ betapublic relations .com
Michael Paganik	AJP Electric, Inc.	602-703-8216	Michaele ajpelectric. com
Set Auchter	Vasteo Inc	928-830-1159	Sauchter @ 1/25/20 . cm
Jenaca Durnes	Tierra Verde Builders	928-567-2477	bbossous@ fierra verdebuilders
DELL DEAN	STANDARD CONSIGNATION	623-696-9828	ESTIMATING QSTANDARD DE COM
RYAN ADAMS	TIFFANY CONSPRUEDON	928-204-9817	RADAMS@ TIFFANYCONST.COM
TRAVIS ZELLNER	CITY OF SEDONA	928-203-5030	TZELLNER & SEDONAR . GOU
SAL VALENZUELA	CITY OF SEDONA	928-203-5630	SVALENZUELA @ SELONAAZ. 601

3/14/2023